当前共找到 1417 篇文献分享,本页显示第 1 - 20 篇。
1.
尹志
(2025-12-31 23:41):
#paper doi: https://doi.org/10.1016/j.future.2024.04.060. Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions. 大综述,讲了量子计算为中心的计算范式,在材料科学中的算法、应用及方向。对多个材料科学的案例进行了讲解,算法部分的综述也很系统。可以说是量子计算for材料科学最优的概览素材之一。甚至对其他类似领域如药物发现等也有很好的借鉴意义。
Future Generation Computer Systems,
2024-11.
DOI: 10.1016/j.future.2024.04.060
Abstract:
No abstract available.
2.
半面阳光
(2025-12-31 22:50):
#paper doi: https://doi.org/10.1038/s41598-019-50378-8. Scientific Reports. 2019. A novel high-throughput molecular counting method with single base-pair resolution enables accurate single-gene NIPT. 在NIPT技术应用中,无论是传统的无创检测还是近年来不断发展的无创单基因病检测,分子计数非常关键。这篇文章开发一个叫做 Quantitative Counting Template (QCT)的分子计数技术。简单说就是测在扩增和测序序之前,在模板DNA上添加了一个Embedded Molecular Index (EMI)独特分子标签,然后再进行扩增和测序,在获得测序数据后,通过EMI来识别模板分子,进而实现更为准确的计数。随后,研究人员基于这个技术,开发了针对镰状细胞病、囊性纤维化、脊髓性肌萎缩症、α地中海贫血及β地中海贫血(sickle cell disease, cystic fibrosis, spinal muscular atrophy, alpha-thalassemia, and beta-thalassemia)的单基因NIPT(sgNIPT)检测。该检测的分析敏感性与特异性均超过98%和99%。通过妊娠期采集的母体血液样本进一步验证了sgNIPT检测,其结果与新生儿随访检测100%一致。近年来,无创单基因病检测技术日渐增多和成熟,但直观感受上来看,单基因病的NIPT检测更多地要依靠实验环节的技术创新来达成。
Scientific Reports,
2019-10-7.
DOI: 10.1038/s41598-019-50378-8
Abstract:
Abstract Next-generation DNA sequencing is currently limited by an inability to accurately count the number of input DNA molecules. Molecular counting is particularly needed when accurate quantification is required for …
>>>
Abstract Next-generation DNA sequencing is currently limited by an inability to accurately count the number of input DNA molecules. Molecular counting is particularly needed when accurate quantification is required for diagnostic purposes, such as in single gene non-invasive prenatal testing (sgNIPT) and liquid biopsy. We developed Quantitative Counting Template (QCT) molecular counting to reconstruct the number of input DNA molecules using sequencing data. We then used QCT molecular counting to develop sgNIPTs of sickle cell disease, cystic fibrosis, spinal muscular atrophy, alpha-thalassemia, and beta-thalassemia. The analytical sensitivity and specificity of sgNIPT was >98% and >99%, respectively. Validation of sgNIPTs was further performed with maternal blood samples collected during pregnancy, and sgNIPTs were 100% concordant with newborn follow-up.
<<<
翻译
3.
小年
(2025-12-31 22:12):
#paper doi:10.1038/s41586-025-09440-x,Hor JL, Schrom EC, Wong-Rolle A, et al. Inhibitory PD-1 axis maintains high-avidity stem-like CD8+ T cells(Nature, 2025, IF:69.504)
这篇论文聚焦 PD-1/PD-L1 免疫检查点疗法应答率有限及耐药的核心机制,针对 “干细胞样 CD8+T 细胞如何维持干性以支持持久抗肿瘤免疫” 的关键问题,采用三维多重免疫荧光成像结合细胞功能验证等技术开展研究。发现肿瘤引流淋巴结内存在由 I 型树突状细胞构成的 “抗原呈递龛”,其中驻留的 TCF-1+PD-1+SLAMF6high 干细胞样 CD8+T 细胞可在持续抗原刺激下维持增殖与自我更新 —— 与传统认知不同,PD-1 信号并非单纯抑制 T 细胞,而是通过精细调控 TCR 信号强度,选择性扩增高亲和力 TCR 克隆,使其成为效应 T 细胞的可再生储备库。进一步实验显示,PD-1 阻断会破坏该调控平衡,导致高亲和力干细胞样细胞终末分化或死亡,且这种损伤难以恢复。该研究颠覆了对 PD-1 功能的传统认知,揭示了免疫治疗短期疗效与长期储备的潜在矛盾,为优化治疗策略、克服耐药提供了全新理论基础。
Nature,
2026-1-1.
DOI: 10.1038/s41586-025-09440-x
Abstract:
Abstract Stem-like progenitors are self-renewing cytotoxic T cells that expand as effector cells during successful checkpoint immunotherapy 1,2 . Emerging evidence suggests that tumour-draining lymph nodes support the continuous generation …
>>>
Abstract Stem-like progenitors are self-renewing cytotoxic T cells that expand as effector cells during successful checkpoint immunotherapy 1,2 . Emerging evidence suggests that tumour-draining lymph nodes support the continuous generation of these stem-like cells that replenish tumour sites and are a key source of expanded effector populations 3–6 , underlining the importance of understanding what factors promote and maintain activated T cells in the stem-like state. Here, using advanced three-dimensional multiplex immunofluorescence imaging, we identify antigen-presentation niches in tumour-draining lymph nodes that support the expansion, maintenance and affinity evolution of TCF-1 + PD-1 + SLAMF6 high stem-like CD8 + T cells. Contrary to the prevailing view that persistent T cell receptor (TCR) signalling drives terminal effector differentiation, prolonged antigen engagement days beyond initial priming sustains the proliferation and self-renewal of these stem-like T cells in vivo. The inhibitory PD-1 pathway has a central role in this process through fine-tuning the TCR signal input that enables the selective expansion of high-affinity TCR stem-like clones as a renewable source of effector cells. PD-1 blockade disrupts this tuning, leading to terminal differentiation or death of the most avid anti-tumour stem-like cells. Our results therefore reveal a relationship between TCR ligand affinity recognition, a key negative-feedback regulatory loop and T cell stemness programming. Furthermore, these findings raise questions about whether anti-PD-1 blockade during cancer immunotherapy provides a short-term anti-tumour effect at the cost of diminishing efficacy due to progressive loss of these critical high-affinity precursors.
<<<
翻译
4.
林海onrush
(2025-12-31 21:49):
#paper, Superposition Yields Robust Neural Scaling, DOI: 10.48550/arXiv.2505.10465. NIPS2025的亚军论文奖,MIT物理团队出身的AI工作,这篇论文提出:神经网络的幂律缩放(模型越宽/维度越大,loss 越低)可能主要源自表示层的“叠加/超位置(superposition)”机制——当需要表示的特征数远大于隐藏维度时,模型会把许多特征压进同一组维度里,导致表示向量之间的重叠干扰;随着维度 (m) 增大,随机几何使这种重叠的平均强度自然按 (~ 1/m) 下降,从而产生鲁棒的 (L∝ 1/m) 幂律缩放。作者用可控的 toy model 对比了弱与强 superposition:弱 superposition 下缩放更依赖数据特征频率的幂律尾部,而强 superposition 下则更普遍地产生接近指数 1 的缩放;并进一步在多种真实 LLM 上测得 token输出权重向量的重叠随宽度近似 (1/m) 下降、宽度指数约 0.9,支持“大模型处于强 superposition、几何干扰驱动缩放”的解释。
arXiv,
2025-05-15T16:18:13Z.
DOI: 10.48550/arXiv.2505.10465
Abstract:
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a …
>>>
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling inversely with model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
<<<
翻译
5.
Vincent
(2025-12-31 20:29):
#paper https://arxiv.org/abs/1706.03762 arxiv 2017. Attention Is All You Need. 这篇经典论文提出了Transformer,一种全新设计的序列转换模型,完全基于注意力机制而不再使用循环神经网络(RNN)或卷积神经网络(CNN),通过自注意力(Self-Attention)和多头注意力(Multi-Head Attention)有效建模序列中不同位置之间的依赖关系,使得训练可以大规模并行化而不受序列顺序计算的限制。Transformer 采用标准的编码器-解码器架构,其中编码器和解码器都由多个注意力层与前馈网络层堆叠构成,并通过位置编码注入序列中的位置信息,从而弥补没有序列结构时丢失的顺序信息。实验结果表明,该模型在 WMT 2014 英德翻译和英法翻译任务上分别显著优于传统的循环与卷积基线模型,同时训练速度更快,展现出强大的长距离依赖建模能力,并为后续大规模语言模型与多模态 Transformer 架构奠定了基础
arXiv,
2017-06-12T17:57:34Z.
DOI: 10.48550/arXiv.1706.03762
Abstract:
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an …
>>>
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
<<<
翻译
6.
徐炳祥
(2025-12-31 20:22):
#paper doi: 10.1038/s41467-025-64186-4 Nature communications, 2025, A comprehensive benchmark of single-cell Hi-C embedding tools。低维嵌入是单细胞Hi-C(scHi-C)分析的核心步骤,是分析能否挖掘数据中蕴含的细胞间染色质构象异质性的关键。本文采用了大量公开文献中的算例,结合自行定制的测试程序和评价指标,系统性评价了截至发稿时主流scHi-C嵌入工具的性能。作者指出,当前没有任何一种工具在所有数据集中具有一致的优势。传统的基于随机游走模型的嵌入技术倾向于更多使用长距离香港胡作用信息,而近期发表的基于深度学习的模型则反之。深度学习模型能基于更小的测序深度在更高分辨率下完成嵌入任务。此外,作者最后指出,如mc3C-seq之类多模态单细胞测序方法能更细致的区分彼此相似的细胞类型。本文不仅是对现有单细胞Hi-C嵌入算法的系统总结,更解释了算法性能差异的成因,为应用和后续新算法的开发指明了方向。
Nature Communications,
2025-10-14.
DOI: 10.1038/s41467-025-64186-4
Abstract:
Abstract Embedding is the key step in single-cell Hi-C (scHi-C) analysis which relies on capturing biological meaningful heterogeneity at various levels of genome architecture. To understand the strength and limitations …
>>>
Abstract Embedding is the key step in single-cell Hi-C (scHi-C) analysis which relies on capturing biological meaningful heterogeneity at various levels of genome architecture. To understand the strength and limitations of existing tools in various applications, here we use ten scHi-C datasets to benchmark thirteen embedding tools including Va3DE, a new convolutional neural network model that can accommodate large cell numbers. We built a software framework to decouple the preprocessing options of existing tools and found that no single tool works best across all datasets under default settings. The difficulty levels and preferred resolutions are different between benchmark datasets, and the choice of data representation and preprocessing strongly impact the embedding performance. Embedding cells from early embryonic stages relies on long-range compartment-scale contacts, but resolving cell cycle phases and complex tissue requires short-range loop-scale contacts. Both random-walk and inverse document frequency (IDF) transformation prefers long-range “compartment-scale” over short-range “loop-scale” embedding, while deep-learning methods better overcome sparsity at both scales and are more versatile with different resolutions. Finally, “diagonal integration” with independent data modal is a promising approach to distinguish similar cell subpopulations. Our findings underscore the significance of appropriate priors for scHi-C embedding and also offer insights into genome architecture heterogeneity.
<<<
翻译
7.
龙海晨
(2025-12-31 19:09):
#paper Liao H, Ma R, Hao S, Tan X, Zeng X, Song R, Chen B, Cao Z, Shen W, Luo Z, Huang J, Huang H, Liu L, Duan C. Revealing Cell-Free Mitochondrial DNA Breakage Patterns as Novel Biomarkers for Sepsis. Adv Sci (Weinh). 2025 Oct;12(39):e14159. doi: 10.1002/advs.202414159. Epub 2025 Jul 26. PMID: 40714845; PMCID: PMC12533296. 这是一篇研究脓毒症的文章,该研究首次将线粒体DNA片段组学技术应用于脓毒症的早期诊断和预后评估,凸显了cfmtDNA断裂模式的临床潜力。与传统的 cfmtDNA 拷贝数分析相比,血浆 cfmtDNA 的 RNR2 和 COX2 区域的特异性断裂为脓毒症的早期诊断提供了更高的敏感性和特异性。值得注意的是,COX2 区域的高频断裂与不良预后密切相关,使其成为潜在的早期预警指标。进一步分析显示,在脓毒症患者中,血浆 cfmtDNA 暴露位点的蛋白质结合水平降低,这些位点容易被细菌释放的限制性核酸内切酶切割,从而导致高频断裂。这些见解为推进脓毒症的早期诊断和预后评估以及开发治疗靶点提供了新的方向。
Advanced Science,
2025-10.
DOI: 10.1002/advs.202414159
Abstract:
Abstract Accurate early diagnosis and prognosis of sepsis remain major clinical challenges. This study explores specific plasma cell‐free mitochondrial DNA (cfmtDNA) breakage patterns as potential biomarkers for sepsis. Plasma samples …
>>>
Abstract Accurate early diagnosis and prognosis of sepsis remain major clinical challenges. This study explores specific plasma cell‐free mitochondrial DNA (cfmtDNA) breakage patterns as potential biomarkers for sepsis. Plasma samples from ten non‐sepsis control patients and 63 sepsis patients are analyzed using mitochondrial DNA fragmentomics, revealing distinct breakage sites in the RNR2 (positions 2474–2478) and COX2 (positions 7761, 7775, 7776, 7777, and 7783) regions, which are intact in healthy individuals but exhibited high‐frequency breakage in sepsis patients. Diagnostic models based on these breakage sites show superior accuracy for sepsis detection (AUC = 0.865) and prognosis prediction (AUC = 0.809) compared to traditional cfmtDNA copy number assessments. Notably, COX2 breakage frequency correlated with inflammatory markers and SOFA scores, highlighting its prognostic potential. Mechanistic analyses suggest that reduced protein binding in sepsis may increase cfmtDNA susceptibility to cleavage by bacterial restriction endonucleases. These findings indicate that plasma cfmtDNA breakage characteristics can serve as valuable biomarkers for early sepsis detection and therapeutic monitoring.
<<<
翻译
8.
符毓
(2025-12-31 17:21):
#paper doi: 10.48550/arXiv.2512.16907, 2025, Flowing from Reasoning to Motion: Learning 3D Hand Trajectory Prediction from Egocentric Human Interaction Videos
Meta推出了 EgoMAN 数据集,这是一个大规模的以第一视角的基准数据集,用于6DoF手部轨迹预测。以及对应的预测模型,这是一个模块化的推理到运动框架,它通过轨迹标记接口和渐进式训练,将高层意图与基于物理的 6DoF 轨迹对齐。实验表明,与仅基于运动和基于VLM基线模型相比,EgoMAN 模型取得了显著优势:流匹配能够生成更平滑、更稳定的轨迹;VLM 驱动的推理提高了语义对齐和对新场景及意图的泛化能力;轨迹标记接口实现了高效的推理,将基于意图的阶段感知推理与精确的底层运动生成相结合。总而言之,EgoMAN 为实现上下文动作预测提供了一个切实可行的步骤,支持机器人操作、语言感知运动合成和意图感知辅助系统等应用。
之前数据集的一个主要瓶颈在于缺乏大规模、高质量的3D轨迹数据。部分数据集提供了准确的标注,但多样性有限;而大规模的以自我为中心的视频数据集包含丰富的真实世界交互,但轨迹噪声较大、目标导向性较弱,且缺乏时间结构。关键在于,它们缺乏明确的交互阶段,例如接近和操作,而这些阶段对于将有目的的运动与背景区分开来,以及将轨迹与意图联系起来至关重要。基于此类原始视频训练的模型通常泛化能力较差,因为缺乏意图、空间关系和运动动态之间的联系。
arXiv,
2025-12-18T18:59:01Z.
DOI: 10.48550/arXiv.2512.16907
Abstract:
Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we …
>>>
Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we first present the EgoMAN dataset, a large-scale egocentric dataset for interaction stage-aware 3D hand trajectory prediction with 219K 6DoF trajectories and 3M structured QA pairs for semantic, spatial, and motion reasoning. We then introduce the EgoMAN model, a reasoning-to-motion framework that links vision-language reasoning and motion generation via a trajectory-token interface. Trained progressively to align reasoning with motion dynamics, our approach yields accurate and stage-aware trajectories with generalization across real-world scenes.
<<<
翻译
9.
钟鸣
(2025-12-31 16:56):
#paper doi:10.1073/pnas.2420092122 The entities enabling scientific fraud at scale are large, resilient, and growing rapidly 作者分析了论文造假这个问题, 主要是有组织的造假:期刊编辑中有部分人"背叛"了科学,他们与论文工厂里应外合, 论文工厂有专门团队分工,有专门数据库素材,甚至有中间人和公开渠道撮合交易;叛徒编辑则集中审稿,进而形成工业化的产业.这些问题损伤了科学术模式的公正性,污染学术成果池,且增长速度远高于清除速度.本文的研究方法是统计分析, 标注为假论文的标准是撤稿以及被pubpeer评论.作者关注的领域似乎集中生物类, 有趣的是不同子领域撤稿率不同,如:撤稿率从 CRISPR-Cas9 到时tRNA、环状 RNA、miRNA和 lncRNA逐渐增加,而癌症的撤稿率也高于发育。本文指出了问题,却没有很好的解决建议, 表明这个问题难且复杂.
Proceedings of the National Academy of Sciences,
2025-8-12.
DOI: 10.1073/pnas.2420092122
Abstract:
Science is characterized by collaboration and cooperation, but also by uncertainty, competition, and inequality. While there has always been some concern that these pressures may compel some to defect from …
>>>
Science is characterized by collaboration and cooperation, but also by uncertainty, competition, and inequality. While there has always been some concern that these pressures may compel some to defect from the scientific research ethos—i.e., fail to make genuine contributions to the production of knowledge or to the training of an expert workforce—the focus has largely been on the actions of lone individuals. Recently, however, reports of coordinated scientific fraud activities have increased. Some suggest that the ease of communication provided by the internet and open-access publishing have created the conditions for the emergence of entities—paper mills (i.e., sellers of mass-produced low quality and fabricated research), brokers (i.e., conduits between producers and publishers of fraudulent research), predatory journals, who do not conduct any quality controls on submissions—that facilitate systematic scientific fraud. Here, we demonstrate through case studies that i) individuals have cooperated to publish papers that were eventually retracted in a number of journals, ii) brokers have enabled publication in targeted journals at scale, and iii), within a field of science, not all subfields are equally targeted for scientific fraud. Our results reveal some of the strategies that enable the entities promoting scientific fraud to evade interventions. Our final analysis suggests that this ability to evade interventions is enabling the number of fraudulent publications to grow at a rate far outpacing that of legitimate science.
<<<
翻译
10.
白鸟
(2025-12-31 16:53):
#paper DOI: 10.1038/s41587-025-02612-0, Scalable spatial transcriptomics through computational array reconstruction.2025
文献提出了一种无成像的空间转录组技术,通过分子扩散与降维计算重建空间条形码定位,重点是不依赖显微成像,通过计算推断空间位置。
1.传统的空间转录组(基于成像):“先拍图、再定位”,通过高质量显微成像确定每一个捕获点在组织中的物理位置,再将转录信息映射到空间坐标;
2.无成像空转具体原理:不使用成像,利用分子之间的扩散关系,通过计算把空间位置“算”出来。
(1)实验设计:芯片采用“马赛克式”微珠阵列,随机分布两类微珠:捕获珠用于捕获组织来源的mRNA;可扩散珠不捕获RNA,只负责“发信号”,释放带有空间条形码的信号分子。
(2)分子扩散:通过光解,可扩散珠上的DNA条形码被释放并向周围扩散,类似墨水滴入水中,被附近的捕获珠“接住”,从而形成捕获珠与扩散珠之间的扩散关系矩阵。
(3)降维重建:扩散矩阵中,行表示捕获珠,列表示扩散条形码,数值代表接收强度。若两个捕获珠接收到高度相似的扩散条形码组合,则说明它们在空间上彼此接近。基于这一相似性结构,利用UMAP降维算法可重建微珠的相对空间位置。
3.商业转化价值:
(1)对分子扩散效率高度依赖,在组织尺度增大或结构复杂时,局部空间重建可能出现偏差。
(2)在实际应用中,推导的空间位置需要真实图像数据验证和校准。
11.
孤舟蓑笠翁
(2025-12-31 15:11):
paper 【doi】10.1038/s41588-025-02417-6;【发表年份】2025;【期刊】Nature Genetics;【标题】Genomic and transcriptomic analyses of aortic stenosis enhance therapeutic target discovery and disease prediction。【内容总结】这项研究旨在通过大规模基因组分析揭示主动脉瓣狭窄(AS)的遗传基础并发现新的治疗靶点,主要采用了多族裔全基因组关联分析(GWAS)、性别和种族分层GWAS、X染色体分析、转录组关联分析(TWAS)以及基因沉默实验等方法;研究团队对2,853,408人(包括86,864例AS患者)进行了迄今最大规模的AS遗传分析,发现了261个独立风险位点(其中223个是新发现的),并首次识别出X染色体上的3个风险位点、5个男性特异性位点和1个非洲裔特异性位点;通过整合人类主动脉瓣表达数量性状位点(eQTL)数据,确定了54个与AS风险相关的新基因,其中细胞骨架相关基因(如PALLD、SVIL)以及多不饱和脂肪酸代谢通路基因CMKLR1和转化生长因子β信号通路基因LTBP4被实验验证可抑制人类瓣膜间质细胞钙化;此外,新开发的多基因风险评分(PRS)在UK Biobank和TIMI临床试验等独立数据集中显示出比既往评分高一倍的疾病预测能力(风险比HR=1.92),且其预测效能超过多数临床风险因素(如糖尿病、高血脂等),仅低于年龄因素。这些发现不仅深化了对AS分子机制的理解(如细胞骨架调控、脂质代谢异常的核心作用),还为早期干预和靶向治疗提供了新方向。
Nature Genetics,
2025-12-19.
DOI: 10.1038/s41588-025-02417-6
Abstract:
Abstract Aortic stenosis (AS) is a common valvular heart disease and has no pharmacological therapies. We performed a multi-ancestry genome-wide association meta-analysis of 86,864 AS cases among 2,853,408 individuals, discovering …
>>>
Abstract Aortic stenosis (AS) is a common valvular heart disease and has no pharmacological therapies. We performed a multi-ancestry genome-wide association meta-analysis of 86,864 AS cases among 2,853,408 individuals, discovering 241 autosomal independent risk loci and 3 X chromosome risk loci. We additionally performed sex-stratified and ancestry-stratified genome-wide association studies (GWASs), identifying an additional 5 sex-specific risk loci, 11 risk loci in European ancestry individuals and 1 risk locus in African ancestry individuals. We also performed a transcriptome-wide association study using expression quantitative trait loci from human aortic valves, discovering 54 new genes for which genetically predicted expression influences the risk of AS. We then generated a new polygenic risk score for AS. Finally, we performed gene silencing experiments targeting biologically relevant genes identified by our GWAS. Silencing of CMKLR1 and LTBP4 in human valvular interstitial cells substantially decreased mineralization, implicating a role for polyunsaturated fatty acids and transforming growth factor β signaling in AS.
<<<
翻译
12.
惊鸿
(2025-12-31 13:53):
#paper DOI: 10.1056/NEJMoa2400521
英文标题: DB-OTO Gene Therapy for Inherited Deafness
时间: 2025年10月12日(《新英格兰医学杂志》正式发表)
核心突破
本研究针对OTOF基因突变导致的先天性耳聋,首次采用双AAV1载体递送正常OTOF基因,成功恢复患者听力。12名参与者中,9人听力显著改善(平均听阈从>90 dB恢复至45–55 dB),其中3人听力完全恢复正常(≤25 dB)。
技术亮点
双AAV载体设计:解决OTOF大基因(约6 kb)超载难题,通过重叠序列在细胞内精准拼接。
精准靶向:采用毛细胞特异性启动子Myo15,避免广谱启动子的毒性风险。
突破年龄限制:16岁青少年治疗后听力改善,挑战“听觉关键期不可逆”的传统认知。
局限与展望
当前样本量较小(n=12),长期疗效需>5年随访验证。未来可拓展至其他耳聋基因(如GJB2),并探索非病毒递送系统。
总结:该研究实现了感觉神经系统功能的“正常化”修复,为遗传性耳聋提供了根治性新范式。
New England Journal of Medicine,
2025-10-12.
DOI: 10.1056/NEJMoa2400521
Abstract:
No abstract available.
13.
哪有情可长
(2025-12-31 09:50):
#paper Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature genetics, 18 July 2022, doi.org/10.1038/s41588-022-01127-7. 普通燕麦(A. sativa L.,2n = 6x = 42,AACCDD 基因组)是全球重要的谷物作物,长期以来深受消费者珍视,主要因为它是所有作物中蛋白质、脂肪和维生素B1最丰富的来源之一。研究人员组装了一个来源于中国裸燕麦Sanfensan,并通过测定组装其他可能祖先物种长颖燕麦(A.longiglumis,2n=2x=14,AlAl基因组)和岛屿燕麦(A.insularis,2n=4x=28,CCDD基因组)来鉴定六倍体燕麦的多倍体化历史。分析了燕麦在谷物作物中的进化地位发现燕麦物种的多样化发生在约870万年前,早于小麦660万年。其中水稻被认为进化最慢的物种,拥有12条染色体,系统发育学分析发现三叶科(小麦、大麦、黑麦)、燕麦和稻科作为外群聚在一起。将燕麦跟小麦的三个基因组比发现大量的染色体重排。该团队又重新测序了14个代表不同基因组亚型和倍数层级(As、Al、Ac、Ad、Cv、Cp、AB和CD)的Avena物种的基因组来分析燕麦的多倍体化求找到多倍体的祖先。六倍体燕麦的D基因组祖体与A基因组的关系比与C基因组更为接近,可能已经灭绝。C和A/D谱系大约在800万年前分化,随后是A基因组亚型(Ac/Ad)和D基因组,约在350万年前出现。培养的ACD基因组六倍体燕麦约在50万年前,源于父系Al/As基因组二倍体祖先与母系CD基因组四倍体(与A. insularis密切相关)之间的杂交,源自父系C基因组与母系D基因组二倍体之间的同素四倍体事件。
Nature Genetics,
2022-8.
DOI: 10.1038/s41588-022-01127-7
Abstract:
Abstract Common oat ( Avena sativa ) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have …
>>>
Abstract Common oat ( Avena sativa ) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have been generated, such work in oat has lagged behind, primarily owing to its large, repeat-rich polyploid genome. Here, using Oxford Nanopore ultralong sequencing and Hi-C technologies, we have generated a reference-quality genome assembly of hulless common oat, comprising 21 pseudomolecules with a total length of 10.76 Gb and contig N50 of 75.27 Mb. We also produced genome assemblies for diploid and tetraploid Avena ancestors, which enabled the identification of oat subgenomes and provided insights into oat chromosomal evolution. The origin of hexaploid oat is inferred from whole-genome sequencing, chloroplast genomes and transcriptome assemblies of different Avena species. These findings and the high-quality reference genomes presented here will facilitate the full use of crop genetic resources to accelerate oat improvement.
<<<
翻译
14.
颜林林
(2025-12-31 09:47):
#paper doi:10.1001/archneur.56.6.667, Archives of Neurology, 1999, Genetic Linkage Analysis. 当一个疾病的致病机制完全不清楚时,通过遗传寻找线索,由患者及其亲属之间的遗传关系和各自的表型差异,定位到表型所关联的遗传物质所在染色体区域,这始终是一个最经典但也最有效的做法。虽然大规模高通量测序技术已经深入应用到每个领域方向,但技术的这些进步并不能解决所有问题,仍然有很多疾病,我们对其认知仍然是肤浅甚至茫然的。在尝试了各种常规方法仍然没有预期结果时,不妨回到经典的遗传学方法,沿着前人的探索足迹和思想,继续重新探寻。其实很多现代方法,看似大幅拓展了技术能力,但其解决生物学问题的基础逻辑,仍然是基本没有太多变化的。最近为开展一个家系分析工作,我在调研和重新学习遗传连锁分析的方法原理过程中,找到这篇论文进行精读。这篇论文发表在HGP(人类基因组计划)远未完成的时期,但它介绍了诸如遗传标记(genetic markers)、连锁不平衡(linkage disequilibrium)、LOD(logarithm of the odds)、关联分析(association)等重要概念,并以如何开展遗传连锁分析,寻找致病基因为线索,讲解这些方法背后的基本原理,是一份不错的经典学习材料。
Archives of Neurology,
1999-6-1.
DOI: 10.1001/archneur.56.6.667
Abstract:
No abstract available.
15.
李翛然
(2025-12-30 22:45):
#paper Designing synthetic regulatory elements using the generative AI framework DNA-Diffusion. Nat Genet (2025).doi:doi.org/10.1038/s41588-025-02441-6DNA-Diffusion是一项基于扩散模型的生成式AI技术,旨在从头设计能精确控制基因表达的合成调控元件(如启动子、增强子)。该模型无需依赖已知模板或人工规则,通过在大规模基因组数据中学习,能够直接生成全新的DNA序列。其核心特点是条件可控,研究人员可以指定目标(如所需的基因表达强度、特定的细胞类型)来定向生成符合要求的序列。
实验验证表明,DNA-Diffusion生成的序列在功能上有效:它们能在报告基因实验中展现出稳定且可调控的活性,部分序列还能在不同细胞类型中保持功能。与基于规则或其他AI生成方法相比,该模型在序列的功能性、稳定性和泛化能力上表现更优。例如,它能设计出将特定基因表达提升至超过天然保护性变异水平的序列。
这项研究标志着合成生物学设计范式的一次重要转变——从“预测已有序列的功能”转向“直接生成满足需求的新序列”,为未来基因电路设计和基因治疗提供了强大的新工具。
16.
cellsarts
(2025-12-27 22:05):
#微生物群与环境压力:污染如何影响马尼拉蛤蜊中的微生物群落 DOI:10.1016/j.aquatox.2017.11.0192017-11-27影响因子:4.3JCR分区:1区 - 海洋与淡水生物学1区 - 毒理学中科院分区:3区年发文量:291鉴于微生物群在宿主发育、健康及环境互作中的关键作用,在探究宿主对环境胁迫的适应机制时,无疑应考虑以基因组学为重点的宿主-微生物群互作分析。近期多项研究表明,与消化道相关的微生物群是评估环境污染物毒性时一个至关重要的因素,尽管其具体作用机制尚不完全清楚。事实上,细菌介导的外源性物质代谢可能调节宿主的毒性效应。反之,环境变量(包括污染)也可能改变微生物群落及其代谢活性,从而引发宿主生理状态的改变,并进一步加剧其毒性。在此研究中,我们采用16S rRNA基因扩增子测序技术,对菲律宾蛤仔Ruditapes philippinarum的肝胰腺微生物群组成进行了表征。这些动物采自威尼斯潟湖地区,该区域受到多种人为压力的影响,其中最主要的是波尔托马尔盖拉(PM)工业活动带来的压力。我们探讨了蛤仔微生物群在季节和地理上的差异,并将其与先前研究中在转录组水平上鉴定出的宿主对化学胁迫的响应联系起来,从而揭示了宿主、微生物以及环境参数之间潜在的相互作用。研究结果表明,在冬季的PM蛤仔中反复出现具有潜在解毒功能的细菌类群,且参与外源性物质降解的多个代谢通路显著富集,这提示宿主与微生物可能存在协同解毒作用。此外,我们还观察到季节性变化与化学诱导的响应之间存在强烈的相互作用,这种相互作用部分掩盖了上述潜在的协同解毒作用。因此,季节性因素与有毒物质暴露之间的交互作用明显影响着蛤仔的微生物群落,而这一微生物群落的变化似乎反映了宿主对环境变化的响应。显然,要深入理解动物如何应对化学胁迫,就不能忽视这一响应中的关键组成部分——微生物群。
17.
DeDe宝
(2025-12-19 15:08):
#paper doi.org/10.1038/s41586-025-09226-1 Brain-wide representations of prior information in mouse decision-making该研究系统探索了小鼠在决策过程中如何利用先验(prior information),并首次在全脑尺度上揭示了先验的神经表征。研究令小鼠将屏幕左侧或者右侧(刺激出现在两侧的先验概率不同)的刺激移动到屏幕中央,以获得奖励或者避免惩罚。同时,研究者采集小鼠的神经元信号、眼动信号等数据。行为结果表明,小鼠能根据刺激出现的先验概率更好地完成任务,且在全脑信号中同样能解码出先验信息,解码出的先验与小鼠在0%对比度试次(即刺激和屏幕背景无差异的试次)中的选择显著相关。模型分析结果表明,小鼠的行为模式更符合action kernel model而非贝叶斯最优模型:小鼠根据过去5–6个试次的动作历史更新先验,而非根据刺激历史。综上,本研究表明小鼠在感知决策中能主动利用先验信息,且其行为策略更接近“动作核模型”而非理想贝叶斯模型。且该先验信息在全脑范围内能够被广泛解码。
Nature,
2025-9-4.
DOI: 10.1038/s41586-025-09226-1
Abstract:
Abstract The neural representations of prior information about the state of the world are poorly understood 1 . Here, to investigate them, we examined brain-wide Neuropixels recordings and widefield calcium …
>>>
Abstract The neural representations of prior information about the state of the world are poorly understood 1 . Here, to investigate them, we examined brain-wide Neuropixels recordings and widefield calcium imaging collected by the International Brain Laboratory. Mice were trained to indicate the location of a visual grating stimulus, which appeared on the left or right with a prior probability alternating between 0.2 and 0.8 in blocks of variable length. We found that mice estimate this prior probability and thereby improve their decision accuracy. Furthermore, we report that this subjective prior is encoded in at least 20% to 30% of brain regions that, notably, span all levels of processing, from early sensory areas (the lateral geniculate nucleus and primary visual cortex) to motor regions (secondary and primary motor cortex and gigantocellular reticular nucleus) and high-level cortical regions (the dorsal anterior cingulate area and ventrolateral orbitofrontal cortex). This widespread representation of the prior is consistent with a neural model of Bayesian inference involving loops between areas, as opposed to a model in which the prior is incorporated only in decision-making areas. This study offers a brain-wide perspective on prior encoding at cellular resolution, underscoring the importance of using large-scale recordings on a single standardized task.
<<<
翻译
18.
刘昊辰
(2025-12-01 09:56):
#paper Superhuman AI for Stratego Using Self-Play Reinforcement Learning and Test-Time Search. 研究团队开发出名为Ataraxos的 Stratego 超级 AI,通过自博弈强化学习与测试时搜索技术突破了该游戏海量隐藏信息的挑战,仅花费约数千美元(16 块 H100 训练 1 周 + 4 块 H100 训练 4 天,成本低于 8000 美元),便在 20 场对局中以15 胜 1 负 4 平(85% 有效胜率)击败史上最杰出的 Stratego 选手 Pim Niemeijer,且在 2025 年 Stratego 世界锦标赛演示中对普通选手取得 95% 有效胜率;其核心创新在于动态阻尼的自博弈强化学习(协调正则化强度、策略更新规模与策略强度)、分离的布局网络与移动网络(均基于 Transformer 架构),以及基于信念网络的测试时搜索,同时通过 GPU 加速模拟器(每秒约 1000 万状态更新)和数据处理优化(如 bfloat16 数据类型、零检索数据传输)实现低成本高效训练,大幅超越此前 DeepNash 等方案的性能与成本水平。下载地址:https://arxiv.org/pdf/2511.07312
arXiv,
2025-11-10T17:13:41Z.
DOI: 10.48550/arXiv.2511.07312
Abstract:
Few classical games have been regarded as such significant benchmarks of artificial intelligence as to have justified training costs in the millions of dollars. Among these, Stratego -- a board …
>>>
Few classical games have been regarded as such significant benchmarks of artificial intelligence as to have justified training costs in the millions of dollars. Among these, Stratego -- a board wargame exemplifying the challenge of strategic decision making under massive amounts of hidden information -- stands apart as a case where such efforts failed to produce performance at the level of top humans. This work establishes a step change in both performance and cost for Stratego, showing that it is now possible not only to reach the level of top humans, but to achieve vastly superhuman level -- and that doing so requires not an industrial budget, but merely a few thousand dollars. We achieved this result by developing general approaches for self-play reinforcement learning and test-time search under imperfect information.
<<<
翻译
19.
cellsarts
(2025-11-30 23:59):
paper 宏基因组分箱分析揭示了利用高岭土改良氮循环的机制DOl:10.1016/j.biortech.2023.130156 2023-12-04高效控制堆肥过程中的氮素损失并提升产品品质,已成为当前研究领域备受关注的重要课题。本研究通过宏基因组分箱技术结合逆转录定量聚合酶链式反应,揭示了不同浓度高岭土在减少堆肥过程中氮
素流失方面的积极作用。结果表明,添加0.5%高岭土显著(P<0.05)上调了第35天nosZ和nifH基因的表达水平,同时降低了norB基因的丰度,从而分别使NH3和N2O的排放量减少了61.4%和17.5%。为提高堆肥品质及促进废弃物资源化利用提供了全新的思路与方法。
Bioresource Technology,
2024-2.
DOI: 10.1016/j.biortech.2023.130156
Abstract:
No abstract available.
20.
Vincent
(2025-11-30 21:07):
#paper https://arxiv.org/abs/2104.09864 Arxiv. 2021. RoFormer: Enhanced Transformer with Rotary Position Embedding
这篇论文提出 RoFormer,一种通过旋转式位置编码(Rotary Position Embedding, RoPE)增强 Transformer 推理能力的新方法。传统 Transformer 需要依赖绝对或相对位置向量“相加”到 token 表示中,而 RoPE 另辟蹊径,通过对 query 与 key 施加与位置相关的旋转变换,使自注意力在点积阶段自然地体现相对位置信息。该方法在数学上更优雅、在实现上轻量,并具备更好的长程依赖建模能力,同时与线性注意力等高效变体完全兼容。实验结果显示,RoFormer 在多个长文本任务上均显著优于传统位置编码方案,不需要额外训练成本却能带来更强表示能力,展示出其在更大规模语言模型与复杂序列任务中的广泛应用潜力。
arXiv,
2021-04-20T09:54:06Z.
DOI: 10.48550/arXiv.2104.09864
Abstract:
Position encoding recently has shown effective in the transformer architecture. It enables valuable supervision for dependency modeling between elements at different positions of the sequence. In this paper, we first …
>>>
Position encoding recently has shown effective in the transformer architecture. It enables valuable supervision for dependency modeling between elements at different positions of the sequence. In this paper, we first investigate various methods to integrate positional information into the learning process of transformer-based language models. Then, we propose a novel method named Rotary Position Embedding(RoPE) to effectively leverage the positional information. Specifically, the proposed RoPE encodes the absolute position with a rotation matrix and meanwhile incorporates the explicit relative position dependency in self-attention formulation. Notably, RoPE enables valuable properties, including the flexibility of sequence length, decaying inter-token dependency with increasing relative distances, and the capability of equipping the linear self-attention with relative position encoding. Finally, we evaluate the enhanced transformer with rotary position embedding, also called RoFormer, on various long text classification benchmark datasets. Our experiments show that it consistently overcomes its alternatives. Furthermore, we provide a theoretical analysis to explain some experimental results. RoFormer is already integrated into Huggingface: \url{https://huggingface.co/docs/transformers/model_doc/roformer}.
<<<
翻译