刘昊辰 (2025-07-09 14:59):
#paper Rapfi Distilling Efficient Neural Network for the Game of Gomoku. 本文提出 Rapfi,一种高效的五子棋智能体,在有限计算环境中表现优于基于 CNN 的智能体。Rapfi 利用从 CNN 提炼的基于模式的码本压缩神经网络,以及在输入变化较小时最小化计算的增量更新方案。这种新网络使用数量级更少的计算量,达到与 ResNet 等更大神经网络相似的精度。得益于增量更新方案,深度优先搜索方法(如 α-β 搜索)可以显著加速。通过精心调整评估和搜索,Rapfi 在缺乏 GPU 等加速器的有限计算资源下,实力超越了基于 AlphaZero 算法的最强开源五子棋 AI Katagomo。Rapfi 在 Botzone 的 520 个五子棋智能体中排名第一,并在 2024 年 GomoCup 中夺冠。下载地址:https://arxiv.org/pdf/2503.13178
arXiv, 2025-03-17T13:53:57Z. DOI: 10.48550/arXiv.2503.13178
Rapfi: Distilling Efficient Neural Network for the Game of Gomoku
翻译
Abstract:
Games have played a pivotal role in advancing artificial intelligence, withAI agents using sophisticated techniques to compete. Despite the success ofneural network based game AIs, their performance often requires significantcomputational resources. In this paper, we present Rapfi, an efficient Gomokuagent that outperforms CNN-based agents in limited computation environments.Rapfi leverages a compact neural network with a pattern-based codebookdistilled from CNNs, and an incremental update scheme that minimizescomputation when input changes are minor. This new network uses computationthat is orders of magnitude less to reach a similar accuracy of much largerneural networks such as Resnet. Thanks to our incremental update scheme,depth-first search methods such as the alpha-beta search can be significantlyaccelerated. With a carefully tuned evaluation and search, Rapfi reachedstrength surpassing Katagomo, the strongest open-source Gomoku AI based onAlphaZero's algorithm, under limited computational resources where acceleratorslike GPUs are absent. Rapfi ranked first among 520 Gomoku agents on Botzone andwon the championship in GomoCup 2024.
翻译
回到顶部