当前共找到 5 篇文献分享。
1.
刘昊辰
(2025-07-09 14:59):
#paper Rapfi Distilling Efficient Neural Network for the Game of Gomoku. 本文提出 Rapfi,一种高效的五子棋智能体,在有限计算环境中表现优于基于 CNN 的智能体。Rapfi 利用从 CNN 提炼的基于模式的码本压缩神经网络,以及在输入变化较小时最小化计算的增量更新方案。这种新网络使用数量级更少的计算量,达到与 ResNet 等更大神经网络相似的精度。得益于增量更新方案,深度优先搜索方法(如 α-β 搜索)可以显著加速。通过精心调整评估和搜索,Rapfi 在缺乏 GPU 等加速器的有限计算资源下,实力超越了基于 AlphaZero 算法的最强开源五子棋 AI Katagomo。Rapfi 在 Botzone 的 520 个五子棋智能体中排名第一,并在 2024 年 GomoCup 中夺冠。下载地址:https://arxiv.org/pdf/2503.13178
arXiv,
2025-03-17T13:53:57Z.
DOI: 10.48550/arXiv.2503.13178
Abstract:
Games have played a pivotal role in advancing artificial intelligence, withAI agents using sophisticated techniques to compete. Despite the success ofneural network based game AIs, their performance often requires significantcomputational …
>>>
Games have played a pivotal role in advancing artificial intelligence, withAI agents using sophisticated techniques to compete. Despite the success ofneural network based game AIs, their performance often requires significantcomputational resources. In this paper, we present Rapfi, an efficient Gomokuagent that outperforms CNN-based agents in limited computation environments.Rapfi leverages a compact neural network with a pattern-based codebookdistilled from CNNs, and an incremental update scheme that minimizescomputation when input changes are minor. This new network uses computationthat is orders of magnitude less to reach a similar accuracy of much largerneural networks such as Resnet. Thanks to our incremental update scheme,depth-first search methods such as the alpha-beta search can be significantlyaccelerated. With a carefully tuned evaluation and search, Rapfi reachedstrength surpassing Katagomo, the strongest open-source Gomoku AI based onAlphaZero's algorithm, under limited computational resources where acceleratorslike GPUs are absent. Rapfi ranked first among 520 Gomoku agents on Botzone andwon the championship in GomoCup 2024.
<<<
翻译
2.
龙海晨
(2025-07-07 21:01):
#paper Saadh M. Epigallocatechin gallate (EGCG) combined with zinc sulfate inhibits Peste des petits ruminants virus entry and replication. Saudi J Biol Sci. 2021 Nov;28(11):6674-6678. doi: 10.1016/j.sjbs.2021.07.035. Epub 2021 Jul 17. PMID: 34764780; PMCID: PMC8568804.这是一篇研究小反刍兽疫病毒 ( Peste des petits ruminants virus , PPRV)的文章,表没食子儿茶素没食子酸酯(英文名Epigallocatechin gallate,简称EGCG)研究表明,EGCG与硫酸锌结合,可以显著抑制PPRV进入Vero细胞。这种组合可能够通过阻碍病毒适应来降低感染抗性。
Saudi Journal of Biological Sciences,
2021-11.
DOI: 10.1016/j.sjbs.2021.07.035
Abstract:
No abstract available.
3.
哪有情可长
(2025-07-07 20:10):
#paper Bypassing Negative Epistasis on Yield in Tomato Imposed by a Domestication Gene, Cell, 1 June 2017,https://doi.org/10.1016/j.cell.2017.04.032. 花序结构是决定作物产量的关键因素,但在番茄中,花序结构(如分枝程度)的改良受到限制,尤其是在大果型品种中,过度的分枝会导致花败育和低产。作者发现驯化基因(ej2w)和现代育种基因(j2)的相互作用会导致番茄产生过度的分枝和不育,因为这种负上位效应阻碍了番茄育种的进展。本论文通过对4193分野生和栽培的番茄进行种质筛选,发现了一个s2的突变体,其花序分枝且花梗无关节(jointless pedicel)。通过测序和遗传定位,鉴定出s2是由两个MADS-box转录因子基因(J2和EJ2)的突变引起的。首先使用CRISPR/Cas9技术创建了J2和EJ2的突变体(如j2CR和ej2CR),验证了它们的功能。后续通过酵母双杂交实验和转录组分析,揭示了J2和EJ2在花序分生组织成熟中的冗余作用。对其进行驯化和育种历史分析发现发现ej2w等位基因在番茄驯化过程中被选择(可能与果实增大相关),而j2等位基因在现代育种中被用于无关节性状,但两者结合会导致负上位效应。通过组合自然突变和基因编辑产生的等位基因(如弱等位基因ej2w和强等位基因ej2CR),创建了一系列花序复杂度的连续变异,并培育出弱分枝的高产杂交种。这是一个很好的利用基因编辑和自然等位基因的剂量效应,实现了花序结构的精准调控,并且将基础研究发现直接能够应用于育种,完整的展示了从基因到田间应用的完整的研究方案。
4.
少颖-focus reverse aging
(2025-07-05 05:54):
#paper doi: https://doi.org/10.1101/2025.06.11.659105
标题:X-Atlas/Orion: Genome-wide Perturb-seq Datasets via a Scalable Fix-Cryopreserve Platform for Training Dose-Dependent Biological Foundation Models
发表年份:2025年
总结:目前虚拟细胞的技术因为数据集的发表得到了比较大的提升,解决了大约40-50%的核心数据问题。X-Atlas/Orion 数据集的构建大约18-25人参与,其中有斯坦福大学教授的学生和谷歌公司的高管, 也有参与过药物研发整个流程的人,开发这个数据集的公司里面大佬云集,有斯坦福大学前教授,也有诺奖获得者,也有强生公司前CEO,阵容堪称世界顶尖。感悟:虚拟细胞的设计是顶尖科学家做的事情,所以这件事情会让人很有成就感。我可以参与,但是需要做好投入大量时间的准备。
公众号文章有更详细解读和分析:https://mp.weixin.qq.com/s/evVxdkRds8ZCbXVgnlmWAg
bioRxiv,
2025-6-16.
DOI: 10.1101/2025.06.11.659105
Abstract:
AbstractThe rapid expansion of massively parallel sequencing technologies has enabled the development of foundation models to uncover novel biological findings. While these have the potential to significantly accelerate scientific discoveries …
>>>
AbstractThe rapid expansion of massively parallel sequencing technologies has enabled the development of foundation models to uncover novel biological findings. While these have the potential to significantly accelerate scientific discoveries by creating AI-driven virtual cell models, their progress has been greatly limited by the lack of large-scale high-quality perturbation data, which remains constrained due to scalability bottlenecks and assay variability. Here, we introduce “Fix-Cryopreserve-ScRNAseq” (FiCS) Perturb-seq, an industrialized platform for scalable Perturb-seq data generation. We demonstrate that FiCS Perturb-seq exhibits high sensitivity and low batch effects, effectively capturing perturbation-induced transcriptomic changes and recapitulating known biological pathways and protein complexes. In addition, we release X-Atlas: Orion edition (X-Atlas/Orion), the largest publicly available Perturb-seq atlas. This atlas, generated from two genome-wide FiCS Perturb-seq experiments targeting all human protein-coding genes, comprises eight million cells deeply sequenced to over 16,000 unique molecular identifiers (UMIs) per cell. Furthermore, we show that single guide RNA (sgRNA) abundance can serve as a proxy for gene knockdown (KD) efficacy. Leveraging the deep sequencing and substantial cell numbers per perturbation, we also show that stratification by sgRNA expression can reveal dose-dependent genetic effects. Taken together, we demonstrate that FiCS Perturb-seq is an efficient and scalable platform for high-throughput Perturb-seq screens. Through the release of X-Atlas/Orion, we highlight the potential of FiCS Perturb-seq to address current scalability and variability challenges in data generation, advance foundation model development that incorporates gene-dosage effects, and accelerate biological discoveries.
<<<
翻译
5.
孤舟蓑笠翁
(2025-07-01 22:26):
#paper 【doi】10.1016/j.phymed.2025.156828;【发表年份】2025年;【期刊】Phytomedicine;【标题】Deciphering the molecular mechanisms of QLQX capsules in heart failure: A multi-omics perspective。【内容总结】这篇论文研究了中药QLQX胶囊对保留射血分数心衰(HFpEF)的治疗机制,简单说就是想搞清楚这个药为啥能改善心脏功能。研究者先用网络药理学预测了QLQX的活性成分和潜在靶点,然后通过大鼠实验(包括超声心动图、RNA测序、蛋白质组学和代谢组学)验证效果,发现QLQX能通过调节cGMP-PKG信号通路等改善心脏舒张功能。具体来说,他们先通过计算机分析找到QLQX的44种活性成分可能作用于530个靶点,其中38个与HFpEF相关;接着用手术+高盐饮食制造HFpEF大鼠模型,给不同剂量QLQX治疗8周后,用多组学方法发现药物显著提升了血清一氧化氮(NO)和环磷酸鸟苷(cGMP)水平,改善了心肌肥厚指标,并通过转录组发现216个基因表达被逆转,蛋白质组显示401个差异蛋白被调控,代谢组显示QLQX能纠正脂代谢异常。最终证明QLQX像"多面手"一样通过cGMP-PKG通路协调改善血管功能、钙离子平衡和能量代谢,这解释了它对复杂病因的HFpEF的疗效。