当前共找到 1170 篇文献分享,本页显示第 1141 - 1160 篇。
1141.
吴建虎
(2022-02-28 11:32):
#paper doi:10.1016/j.cell.2019.09.019 Cell 2019 Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore SG10K pilot study
一共4810个WGS样本:Chinese:2,780,Malay:903,Indian:1,127 ,平均深度:13.7X,从常染色体以及X染色体中一共找到89.16M的SNPs和9.11M的indels。文章将重点放在了群体结构分析上,同时对于低深度测序结果的校正上给定了一个新的思路。SG10K 数据库丰富了东亚和南亚人群的基因型,结合1KGP数据库可以很好的对Imputation结果进行校正。根据群体结构分析发现Malay人可能将是SG10K的亮点,这对于CDX人群分析提供了新的帮助。
个人感觉:文章仍有一些不足之处,比如关于假阳性的问题没有正面回答,让人对于后续的分析结果产生疑问。
Abstract:
Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, …
>>>
Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.
<<<
翻译
1142.
思考问题的熊
(2022-02-27 22:55):
#paper 深夜文献安利
简要解读
https://kaopubear.top/blog/2022-02-27-do-clinical-decisions/
通过阅读这篇文献,你一方面可以了解目前的生物标志物物相关高频基因和高频突变位点(有附件可下载),另一方面可以了解临床决策的基本逻辑和重要数据库,最后还能获得一个即刻可用的在线突变注释工具MTPB
Tamborero, D., Dienstmann, R., Rachid, M.H. et al. The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology. Nat Cancer 3, 251–261 (2022). https://doi.org/10.1038/s43018-022-00332-x
Abstract:
There is a growing need for systems that efficiently support the work of medical teams at the precision-oncology point of care. Here, we present the implementation of the Molecular Tumor …
>>>
There is a growing need for systems that efficiently support the work of medical teams at the precision-oncology point of care. Here, we present the implementation of the Molecular Tumor Board Portal (MTBP), an academic clinical decision support system developed under the umbrella of Cancer Core Europe that creates a unified legal, scientific and technological platform to share and harness next-generation sequencing data. Automating the interpretation and reporting of sequencing results decrease the need for time-consuming manual procedures that are prone to errors. The adoption of an expert-agreed process to systematically link tumor molecular profiles with clinical actions promotes consistent decision-making and structured data capture across the connected centers. The use of information-rich patient reports with interactive content facilitates collaborative discussion of complex cases during virtual molecular tumor board meetings. Overall, streamlined digital systems like the MTBP are crucial to better address the challenges brought by precision oncology and accelerate the use of emerging biomarkers.
<<<
翻译
1143.
Ricardo
(2022-02-27 22:12):
#paper doi:https://doi.org/10.1038/s41592-020-01008-z nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation 介绍这一篇2020年发表在nature methods上的文章,做医学图像算法的同学估计都知道这个非常牛逼的工作,用一套自己设计的图像分割的pipeline,没有对神经网络结构做什么改进,在23个公开的医学影像数据集上大都获得了非常好的结果。细看文章和源码,可以看到作者在数据集的预处理上、超参数的选择上、模型调优和集成以及后处理等步骤上做了相当多的工作。
Abstract:
Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable …
>>>
Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.
<<<
翻译
1144.
大象城南
(2022-02-27 21:46):
#paper doi:10.1016/j.neuroimage.2011.01.055 一种改进的对电生理数据计算信号之间相位同步方法——加权相位延迟指数,可以有效避免容积导电现象。这篇文章作者主要提出了一种更加鲁棒的功能连接度量方法。通常我们从LFP、EEG或MEG信号中测量神经元群之间的相互作用时,会采用诸如相位同步,相位相干的计算方法。然而由于空间分辨率并没有接近皮层下神经元的分布,且在头皮测量的EEG和MEG信号会经过颅骨,脑脊液衰减,这种会引起皮层下神经元群的信号在脑皮层测量的信号之间混杂着交互,从而使得度量真实的功能连接不准确。尽管之前有研究者提出虚部相干指数和相位延迟指数,但其要么无法准确度量噪声无关的信号相位的延迟或超前,要么对一些小的相位扰动不敏感,此外也会受到样本量大小产生偏差。为了解决这个问题,作者提出了加权的相位延迟指数具有无偏性,比前人提出的指标更能有效避免容积导电现象。目前该文章被引用900多次。
Abstract:
Phase-synchronization is a manifestation of interaction between neuronal groups measurable from LFP, EEG or MEG signals, however, volume conduction can cause the coherence and the phase locking value to spuriously …
>>>
Phase-synchronization is a manifestation of interaction between neuronal groups measurable from LFP, EEG or MEG signals, however, volume conduction can cause the coherence and the phase locking value to spuriously increase. It has been shown that the imaginary component of the coherency (ImC) cannot be spuriously increased by volume-conduction of independent sources. Recently, it was proposed that the phase lag index (PLI), which estimates to what extent the phase leads and lags between signals from two sensors are nonequiprobable, improves on the ImC. Compared to ImC, PLI has the advantage of being less influenced by phase delays. However, sensitivity to volume-conduction and noise, and capacity to detect changes in phase-synchronization, is hindered by the discontinuity of the PLI, as small perturbations turn phase lags into leads and vice versa. To solve this problem, we introduce a related index, namely the weighted phase lag index (WPLI). Differently from PLI, in WPLI the contribution of the observed phase leads and lags is weighted by the magnitude of the imaginary component of the cross-spectrum. We demonstrate two advantages of the WPLI over the PLI, in terms of reduced sensitivity to additional, uncorrelated noise sources and increased statistical power to detect changes in phase-synchronization. Another factor that can affect phase-synchronization indices is sample-size bias. We show that, when directly estimated, both PLI and the magnitude of the ImC have typically positively biased estimators. To solve this problem, we develop an unbiased estimator of the squared PLI, and a debiased estimator of the squared WPLI.
<<<
翻译
1145.
张浩彬
(2022-02-27 21:33):
#paper doi:10.13546/j.cnki.tjyjc.2017.01.001 基于平衡轮换样本调查的时间序列建模
师门主要是研究抽样技术的,奈何自己关于统计抽样确实没啥储备,只能找些基础性的文章看看。本篇文章介绍了在平衡轮换样本中,如何进行实行时间序列建模。轮换样本,指的是在连续性抽样中,对每期样本进行更新轮换。这种样本抽取方式,有别于一次性抽样调查,因此如何选择合适的估计及建模方式则更加重要。本文应该说是无论是抽样方式,还是估计方法(状态空间模型+卡尔曼滤波)都算是比较经典的方法吧,最后的模型对比则用的是数值模拟的方法,这一点没太大体会。看完之后,还是感觉统计调查方法如何在当前的背景下,有新的突破,还真是不容易。
统计与决策,
2017.
DOI: 10.13546/j.cnki.tjyjc.2017.01.001
Abstract:
连续性抽样调查由于能够描述目标总体随时间的动态变化过程,吸引了越来越多国内外学者的关注。国外连续性抽样的研究已经十分成熟,在已知的轮换模式下,建立合适的模型,使得模型能较好地描述数据的真实生成过程,从而得到精度更高的目标估计量。文章建立一般轮换模式rm1rm- 12下的时间序列模型,然后以6362模式为例,利用状态空间模型和卡尔曼滤波,给出已有信息下的最优估计,有效减少抽样误差,提高样本的估计精度。
>>>
连续性抽样调查由于能够描述目标总体随时间的动态变化过程,吸引了越来越多国内外学者的关注。国外连续性抽样的研究已经十分成熟,在已知的轮换模式下,建立合适的模型,使得模型能较好地描述数据的真实生成过程,从而得到精度更高的目标估计量。文章建立一般轮换模式rm1rm- 12下的时间序列模型,然后以6362模式为例,利用状态空间模型和卡尔曼滤波,给出已有信息下的最优估计,有效减少抽样误差,提高样本的估计精度。
<<<
翻译
1146.
魏魏魏
(2022-02-27 13:29):
#paper doi:10.3390/ijerph120201412 International Journal of Environmental Research and Public Health, (2015), Correlation between Family Environment and Suicidal Ideation in University Students in China. 这篇文章探讨了中国大学生家庭环境与自杀意向的关系。最后发现,有自杀意向的学生有很大的相似性,比如家庭结构和家庭关系糟糕,家庭社会经济地位较差,父母的教养方式有问题。再有女大学生的自杀意向要比男大学生有更多。家庭环境,或者说原生家庭对个体发展真的很重要。
International journal of environmental research and public health,
2015-Jan-27.
DOI: 10.3390/ijerph120201412
PMID: 25633031
PMCID:PMC4344674
Abstract:
BACKGROUND: This study investigated the association between suicidal ideation and family environment. The sample included 5183 Chinese university students. A number of studies on suicidal ideation have focused on individuals …
>>>
BACKGROUND: This study investigated the association between suicidal ideation and family environment. The sample included 5183 Chinese university students. A number of studies on suicidal ideation have focused on individuals rather than families. This paper reviews the general principles of suicidal ideation and the consequences resulting from the family environment.METHODS: This study used six different colleges as the dataset, which included 2645 males and 2538 females. Students were questioned with respect to social demographics and suicidal ideation factors. The data were analyzed with factor and logistic analyses to determine the association between suicidal ideation and poor family environment.RESULTS: The prevalence of suicidal ideation was 9.2% (476/5183). Most participants with suicidal ideation had significant similarities: they had poor family structures and relationships, their parents had unstable work, and their parents used improper parenting styles. Female students were more likely to have suicidal thoughts than male students.CONCLUSIONS: This study shows that suicidal ideation is a public health issue among Chinese university students and demonstrates the importance of considering the family environment when examining university students' suicidal ideation. Understanding family-related suicidal ideation risk factors can help to predict and prevent suicides among university students.
<<<
翻译
1147.
李翛然
(2022-02-27 09:48):
#paper doi 10.1002 : Image2SMILES: Transformer-Based Molecular Optical Recognition Engine (2022) https://doi.org/10.1002/cmtd.202100069 这篇文章主要讲述了如何利用transformer 模型将文献中的化学分子式识别并转换为可以进一步分析用的smiles结构。这项技术算是一个比较“有则更好,无则也能抗的过去”的模型,因为需要进行smiles识别的分子,其肯定基本上都会被关注到论文和结构价值。但是,关注到之后,相关有经验的化学专家看一眼图像就知道里面的问题,和结构细节。 那至于如何找到有价值的化学结构,其实又是NLP读取论文的事情了。所以这个技术我觉得有点鸡肋,北京的望石科技就是干这个的。
Chemistry - Methods,
2022.
DOI: 10.1002/cmtd.202100069
Abstract:
No abstract available.
1148.
小W
(2022-02-22 18:02):
#paper doi 10.1038 : A knowledge graph to interpret clinical proteomics data. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-021-01145-6这篇文章发布了一个临床知识图谱 (CKG),这是一个开源平台,目前包含近 2000 万个节点和 2.2 亿个关系,包括相关的实验数据、公共数据库和文献。CKG 图结构提供了一个灵活的数据模型,当新数据库可用时,该模型很容易扩展到新节点和关系。CKG 结合了统计和机器学习算法,可加速典型蛋白质组学工作流程的分析和解释。CKG 在 21 年初的时候就已经开源相关代码和数据库文件,当时我测试了相关的分析脚本还有蛮大问题,发表文章后又有一些新的不成熟的看法。另外一个阿斯利康的图谱文章写得对生信还蛮有收获。doi 10.1101 Biological Insights Knowledge Graph: an integrated knowledge graph to support drug development
Abstract:
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of …
>>>
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.
<<<
翻译
1149.
物品师
(2022-02-21 05:03):
#paper doi.10.48550 [arxiv.2111.08575] 标题GRI: General Reinforced Imitation and its Application to Vision-Based Autonomous Driving作者Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, Fabien Moutarde领域Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV).链接https://arxiv.org/abs/2111.08575引用arXiv:2111.08575 [cos.RO](or arXiv:2111.08575v1 [cs.RO] for this version) https://doi.org/10.48550/arXiv.2111.08575摘要:深度强化学习 (DRL) 已被证明对自动驾驶和机器人等多种复杂决策应用程序有效。 然而,众所周知,DRL 因其高样本复杂性和缺乏稳定性而受到限制。 先验知识,例如 作为专家演示,通常可用,但难以利用来缓解这些问题。 在本文中,我们提出了通用强化模仿 (GRI),这是一种结合了探索和专家数据的好处的新方法,并且可以直接在任何非策略 RL 算法上实现。 我们做了一个简化的假设:专家演示可以被视为完美的数据,其基础策略会获得持续的高回报。 基于这个假设,GRI 引入了离线演示代理的概念。 该代理发送专家数据,这些数据与来自在线 RL 探索代理的经验同时处理且无法区分。 我们表明,我们的方法可以在城市环境中对基于视觉的自动驾驶进行重大改进。 我们进一步验证了具有不同离策略 RL 算法的 Mujoco 连续控制任务的 GRI 方法。 我们的方法在 CARLA 排行榜上排名第一,并且比之前最先进的 World on Rails 的性能高出 17%。
arXiv,
2021.
DOI: 10.48550/arXiv.2111.08575
Focus to learn more
Abstract:
No abstract available.
1150.
刑无刀
(2022-02-20 22:57):
#paper arXiv:2010.06002 Thinking Fast and Slow in AI
这篇论文主要是为AI下一步发展提出了一个研究方向,灵感和思路来自认知科学领域著名的《思考,快与慢》,后者提出人的认知决策有两个系统,系统1是快速反应,下意识的感知层,系统2是需要经过理性计算、推理,综合更多信息后作出反应的慢系统。作者提出,AI应该是综合“快慢”两者才能更接近的通用智能,系统1对应感知算法,通过深度学习等方法,已经取得突破,而用于推理、计算、决策的慢系统,则需要借助符号系统等方法,有一定的时序性,两者结合,才能更接近真正能够“思考”的智能。基于上述设想,作者提出了10个可能的研究问题,简单列举几个如下:
1. 我们能够清晰地区分AI中的系统1和系统2的能力吗?他们各自的特征是什么?就只有这两类能力吗?还是会有更多能力?
2. 系统2的顺序性(表现为无法并行)是一个bug还是一个feature?我们
应该诉诸机器给系统2发展多线程推理能力吗?如果是这样,结合了机器强大的计算能力,是否能够补偿AI某些方面的缺陷?
3. 综合了系统1和系统2(机器学习和符号逻辑)的AI,用什么评价指标来度量其表现?这些指标应该因任务不同和组合方法不同而不同吗?
arXiv,
2020.
DOI: 10.48550/arXiv.2010.06002
Abstract:
No abstract available.
1151.
白义民
(2022-02-20 22:42):
#paper 《本体论的困难及其出路》。作者简单的阐明了,哲学中不存在通识意义上的本体。《本体论的困难及其出路_赵汀阳.pdf》
1152.
错别字先生
(2022-02-20 19:23):
德国数学物理哲学家在70多岁发表了关于非定域的真空如何涨落出现粒子,提出可分裂的不确定性概念并且用数学拓扑中的模去表达。这篇文章我在第三届全国物理哲学会议上做了报告。这位德国哲学家提出共形无背景格点理论是在2010年发表的翻译文章有七万汉字分上下两篇。ADs-CFT 理论。模的概念是对应环中的空洞数量的数学描述。比如茶杯轮胎的眼。拓扑是茶杯和轮胎的变形关系映射。分享链接:https://sz.tyust.edu.cn/info/1148/1809.htm
1153.
龙海晨
(2022-02-16 00:55):
#paper doi:10.1126/science.aah5869 Science, 2016, Generation of influenza A viruses as live but replication-incompetent virus vaccines
。推荐理由。”通过反向遗传学设计研制甲型流感病毒疫苗的论文。研究解决的问题:
1.可以快速大量生产活病毒疫苗(RNA)
2.信使RNA中引入了一个终止密码子让病毒失去复制能力(与之前的方法相比便宜高效)
3.插入位置在保守区,病毒若通过突变的形式恢复制能力会直接死亡
4.技术的核心:拥有用于病毒恢复复制能力的细胞系用于生产病毒,作为疫苗。病毒离开专门细胞系后丧失复制能力。
5.意外的收获:可以当治疗药物使用。新的病毒和野生型结合会使野生型病毒消失。(之前的技术常发生:活疫苗病毒与野生病毒相遇结果活疫苗产生毒性)。通过在(甲型)流感病毒的信使RNA中引入了一个终止密码子,并保留病毒的完整结构。这样,保留了感染性的病毒进入人体后,可以激活人体细胞的全部免疫反应,但由于终止密码子的存在,病毒无法进行蛋白质翻译,因而失去复制能力。
Science (New York, N.Y.),
2016-12-02.
PMID: 27934767
Abstract:
The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A …
>>>
The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.
<<<
翻译
1154.
魏魏魏
(2022-02-14 11:20):
#paper doi:10.1016/j.dcn.2020.100852 Developmental Cognitive Neuroscience, 2020, The association between parenting and the error-related negativity across childhood and adolescence。此前,关于父母教养方式的研究大多采用问卷法和观察法此类经典的心理学研究方法,很少有将其与生理指标关联的研究。焦虑障碍与一个脑电指标错误相关负电位(Error-related negativity, ERN)相关,焦虑个体的ERN的升高通常意味着焦虑障碍的出现,已有的元分析也表明,ERN与焦虑可能存在中等水平的相关效应。该研究将其与父母的教养方式这一能够诱发焦虑的环境因素联系到一起,探讨了严厉的威权型教养方式是否会影响ERN。基于女性青少年的研究发现,年龄会调节威权型教养方式与ERN的关系,年龄越大,这一关系越不明显。这一结果为焦虑儿童的干预提供了启发。
IF:4.600Q1
Developmental cognitive neuroscience,
2020-10.
DOI: 10.1016/j.dcn.2020.100852
PMID: 32890958
PMCID:PMC7479325
Abstract:
Anxiety is the most common form of psychopathology, and it is often characterized by chronic impairment across the lifespan. Researchers have identified core neural markers that confer risk for anxious …
>>>
Anxiety is the most common form of psychopathology, and it is often characterized by chronic impairment across the lifespan. Researchers have identified core neural markers that confer risk for anxious outcomes. An increased error-related negativity (ERN) in anxious individuals has been shown to prospectively predict onset of anxiety disorders across development. Hence, it is critical to examine environmental factors that may shape the ERN. In the current study, we use a large sample of 170 female adolescents aged 10-17 to investigate whether the ERN mediates the relationship between parenting style and anxiety diagnostic status. This study replicates previous findings, and it extends previous work by suggesting that this relationship is more robust in young children as compared to adolescents. Interventions targeting the ERN via parenting may be most effective during childhood.
<<<
翻译
1155.
数据简化社区(秦陇纪)
(2022-02-13 10:29):
#paper ArXiv:2202.02435v1 [cs.LG] On Neural Differential Equations. 牛津大学数学研究所帕特里克·基格尔(Patrick Kidger)的博士学位论文The webpage at https://arxiv.org/pdf/2202.02435v1.pdf,参考链接https://www.maths.ox.ac.uk/people/patrick.kidger,https://www.reddit.com/r/MachineLearning/comments/snmtzn/r_phd_thesis_on_neural_differential_equations/。
一、这篇231页的博士论文专门探讨神经微分方程(neural ODE),主要内容包括如下:①神经常微分方程(neural ordinary diffeqs):用于学习物理系统,作为离散架构的连续时间限制,包括对可表达性的理论结果;②神经受控微分方程(neural controlled diffeqs):用于建模时间序列函数、处理不规则数据;③神经随机微分方程(neural stochastic diffeqs):用于从复杂的高维随机动态中采样;④数值法(numerical methods):一类新的可逆微分方程求解器或布朗重建(Brownian reconstruction)问题。
二、论文中归纳神经微分方程(neural differential equation, NDEs)的 4 个主要应用为:①物理建模;②时间序列;③生成式建模;④一种开发深度学习模型的策略:取适当的微分方程并将其离散化。
三、用于神经微分方程的数值求解和训练的软件包目前已经进行了标准化,文中提供了几种选择供读者使用:1.在JAX生态系统 [Bra+18] 的Diffrax, https://github.com/patrick-kidger/diffrax;2.在PyTorch生态系统 [Pas+19] 中的torchdiffeq、torchcde 和 torchsde 系列库, https://github.com/rtqichen/torchdiffeq,https://github.com/patrick-kidger/torchcde ,https://github.com/google-research/torchsde ,https://github.com/DiffEqML/torchdyn ;3.在Julia [Bez+17] 生态系统中的 DifferentialEquations.jl, https://github.com/SciML/DifferentialEquations.jl 。
arXiv,
2022.
DOI: 10.48550/arXiv.2202.02435v1
Abstract:
No abstract available.
1156.
十年
(2022-02-12 20:00):
#paper doi:10.1038/s41586-021-04223-6 Wright et al., Deep physical neural networks trained with backpropagation. Nature 601,549-555(2022) 传说中的万物皆可神经网络,作者提出PNN(physical neutral network),在机械、光学、电子方面效果贼好。万物皆可神经网络,牛逼格拉斯。
Abstract:
Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability. Deep-learning accelerators aim to perform deep learning energy-efficiently, usually targeting the …
>>>
Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability. Deep-learning accelerators aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics. Approaches so far have been unable to apply the backpropagation algorithm to train unconventional novel hardware in situ. The advantages of backpropagation have made it the de facto training method for large-scale neural networks, so this deficiency constitutes a major impediment. Here we introduce a hybrid in situ-in silico algorithm, called physics-aware training, that applies backpropagation to train controllable physical systems. Just as deep learning realizes computations with deep neural networks made from layers of mathematical functions, our approach allows us to train deep physical neural networks made from layers of controllable physical systems, even when the physical layers lack any mathematical isomorphism to conventional artificial neural network layers. To demonstrate the universality of our approach, we train diverse physical neural networks based on optics, mechanics and electronics to experimentally perform audio and image classification tasks. Physics-aware training combines the scalability of backpropagation with the automatic mitigation of imperfections and noise achievable with in situ algorithms. Physical neural networks have the potential to perform machine learning faster and more energy-efficiently than conventional electronic processors and, more broadly, can endow physical systems with automatically designed physical functionalities, for example, for robotics, materials and smart sensors.
<<<
翻译
1157.
尹志
(2022-02-08 23:23):
#paper doi: 10.7554/eLife.58906 Anna A Ivanova, et al. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 2020;9:e58906(2020). 这是我在看一本编程小册子的时候作者引的一篇神经科学的研究工作。文章探讨了编程作为一项认知活动,到底是什么认知与神经机制在支撑它?研究者用fMRI技术对两类大脑系统进行了考察:1. multiple demand (MD) system;2. language system。 前者在数学、逻辑、解决问题中被常使用;后者在语言处理中被常使用。作者使用python和ScratchJr两种编程方式(基于文本的和基于图形界面的)进行编码和进行句子的内容匹配。他们发现MD系统在两种编程方式中,对编码活动都有强烈的反应;语言系统则只对句子的内容匹配有强烈的反应,对编码活动的反应很弱。当然这就一定程度上说明了编程活动是一项类似问题解决或者数学解题这样的认知活动。虽然编码很多时候是文字的形式,我们也习惯说编程语言,但处理它的大脑认知机制从实验上来看,似乎并不对应于常规的语言处理。
Abstract:
Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two …
>>>
Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two candidate brain systems: the multiple demand (MD) system, typically recruited during math, logic, problem solving, and executive tasks, and the language system, typically recruited during linguistic processing. We examined MD and language system responses to code written in Python, a text-based programming language (Experiment 1) and in ScratchJr, a graphical programming language (Experiment 2); for both, we contrasted responses to code problems with responses to content-matched sentence problems. We found that the MD system exhibited strong bilateral responses to code in both experiments, whereas the language system responded strongly to sentence problems, but weakly or not at all to code problems. Thus, the MD system supports the use of novel cognitive tools even when the input is structurally similar to natural language.
<<<
翻译
1158.
Ricardo
(2022-01-31 21:02):
#paper doi:https://doi.org/10.1523/JNEUROSCI.3479-08.2008 A Structural MRI Study of Human Brain Development from Birth to 2 Years. 读一篇08年发表在The Journal of Neuroscience上的一篇关于婴幼儿脑结构发育的文章。之前介绍过几篇婴幼儿大脑发育相关的文章,也提到了在出生后的两年时间里,婴幼儿大脑处于快速的动态发育过程,并且这一时期的发育在一些神经发育疾病中(自闭症或精神分裂症)有着重要的影响。这个工作采集了包括98名健康被试从出生到2岁时期的脑结构磁共振影像,并使用北卡罗来纳大学开发的自动分割方法划分脑组织,并测定了侧脑室、尾状核和海马的体积。
分析结果表明:
1. 出生后的第一年全脑容量增加了101%;第二年增加了15%。灰质体积的增长占据了全脑体积增长量的主要部分,在第一年增长了149%,而白质体积仅增加了11%;
2. 小脑容量在第一年增加了240%,侧脑室体积在第一年则增加了280%,在第二年略有下降;
3. 从1岁到2碎,尾状核增长了19%,海马增长了13%。
人类大脑在出生后的两年快速发育,这主要是受到灰质生长的驱动(也就是大脑皮层的增长非常快速)。相比之下,白质的增长要慢得多。
Abstract:
Brain development in the first 2 years after birth is extremely dynamic and likely plays an important role in neurodevelopmental disorders, including autism and schizophrenia. Knowledge regarding this period is …
>>>
Brain development in the first 2 years after birth is extremely dynamic and likely plays an important role in neurodevelopmental disorders, including autism and schizophrenia. Knowledge regarding this period is currently quite limited. We studied structural brain development in healthy subjects from birth to 2. Ninety-eight children received structural MRI scans on a Siemens head-only 3T scanner with magnetization prepared rapid gradient echo T1-weighted, and turbo spin echo, dual-echo (proton density and T2 weighted) sequences: 84 children at 2-4 weeks, 35 at 1 year and 26 at 2 years of age. Tissue segmentation was accomplished using a novel automated approach. Lateral ventricle, caudate, and hippocampal volumes were also determined. Total brain volume increased 101% in the first year, with a 15% increase in the second. The majority of hemispheric growth was accounted for by gray matter, which increased 149% in the first year; hemispheric white matter volume increased by only 11%. Cerebellum volume increased 240% in the first year. Lateral ventricle volume increased 280% in the first year, with a small decrease in the second. The caudate increased 19% and the hippocampus 13% from age 1 to age 2. There was robust growth of the human brain in the first two years of life, driven mainly by gray matter growth. In contrast, white matter growth was much slower. Cerebellum volume also increased substantially in the first year of life. These results suggest the structural underpinnings of cognitive and motor development in early childhood, as well as the potential pathogenesis of neurodevelopmental disorders.
<<<
翻译
1159.
尹志
(2022-01-31 12:53):
#paper doi:10.1038/nature14539 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). 这是深度学习三巨头于2015年写的一篇nature综述。也是nature纪念AI60周年的一系列综述paper里的一篇。这篇paper综述了深度学习这一热门主题。当然,作为深度学习的几位奠基人,确实把深度学习的概念原理应用写的深入浅出。本文从监督学习一直介绍到反向传播,主要综述了CNN和RNN的原理及其应用,很适合初学者全面了解(当时)的深度学习的概貌。在最后一段深度学习的未来一节,作者对无监督学习的未来报以热烈的期望,看看这几年,特别是yann lecun大力推动的自监督成为显学,也算是念念不忘必有回响了。
Abstract:
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in …
>>>
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
<<<
翻译
1160.
Dante ଲ ଲ ଲ
(2022-01-26 17:59):
#paper doi:10.1088/1742-6596/664/9/092010 The Effect of NUMA Tunings on CPU Performance 水文一篇,就是介绍一下什么是 NUMA( Non-Uniform Memory Access 就是给 CPU 不同的 core 区分不同的 memory 当 core 访问靠近的 memory 时速度会更快,这是为了解决 multiple core 架构下 cpu 挤在一条 bus 上访问 memory 导致性能瓶颈的一个方案),然后在自己不同架构的机器上跑跑测试集,再比较一下,说明不同的 NUMA memory 的性能差异,这样就是一篇文章了。除了「NUMA memory policy 要考虑不同 workload 」,没太多有价值的东西(甚至它的测试集跟我想要的场景都不相干)。
Abstract:
No abstract available.