来自用户 大象城南 的文献。
当前共找到 9 篇文献分享。
1.
大象城南
(2022-09-30 14:31):
#paper doi.org/10.1016/j.neuroimage.2012.12.054 Track-weighted functional connectivity (TW-FC): A tool for characterizing the structural–functional connections in the brain. NeuroImage. 2013. MRI 为无创研究大脑中的功能和结构连接提供了强大的工具。功能连接 (FC) 技术利用缓慢自发信号波动的内在时间相关性来表征大脑功能网络。此外,弥散 MRI 纤维追踪可用于研究白质结构连接。近年来,人们对结合这两种技术以提供大脑的整体结构-功能描述产生了相当大的兴趣。在这项工作中,我们应用了最近提出的超分辨率轨迹加权成像 (TWI) 方法来演示如何将全脑纤维跟踪数据与 FC 数据相结合以生成轨迹加权 (TW) FC 图FC 网络。该方法应用于来自 8 名健康志愿者的数据,并用 ( i ) 使用基于种子连接的分析获得的 FC 网络(在楔前叶/后扣带回皮层,PCC 中播种,已知是默认模式网络的一部分)进行说明,和(二) 使用独立成分分析生成的 FC 网络(特别是默认模式、注意力、视觉和感觉运动网络)。TW-FC 图在连接 FC 网络节点的白质结构中显示出高强度。例如,扣带束在基于 PCC 种子的分析中显示出最强的 TW-FC 值,因为它们在内侧额叶皮层和楔前叶/后扣带皮层之间的连接中起主要作用;类似地,上纵束在注意力网络、视觉网络中的视辐射以及感觉-运动网络中的皮质脊髓束和胼胝体中都有很好的表现。TW-FC 地图突出显示与给定 FC 网络相关的白质连接,并且它们在给定体素中的强度反映了由穿过该体素的结构连接连接的网络节点部分的功能连接性。因此,它们包含与用于生成它们的图像不同的(和新颖的)图像对比度。本研究中显示的结果说明了 TW-FC 方法在将结构和功能数据融合为单一的定量图像。因此,这种技术可以在神经科学和神经学中具有重要的应用,例如基于体素的比较研究。
Abstract:
MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous …
>>>
MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies.
<<<
翻译
2.
大象城南
(2022-08-31 11:02):
#paper doi.org/10.1016/j.neuroimage.2022.119550 NeuroImage, 2022, Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. 与已知的长联络纤维束相比,短联络纤维束具有更高的被试间变异性和更小的尺寸,因此对对短联络纤维束的研究仍是一个未完成的任务。然而,它们的描述对于理解人类大脑功能障碍和更好地描述人类大脑连接体是必不可少的。在这项工作中,作者提出了一个短联络纤维的多被试脑图谱,它是使用基于纤维束聚类的浅表层白质识别方法计算的。为了创建脑图谱,作者使用了来自HCP数据库的100名受试者的概率纤维追踪束图,并用非线性配准的方式将它们对齐。该方法从被试内的短联络纤维(30~50 mm)聚类开始。在皮层脑图谱的基础上,对来自所有受试者的簇内质心进行分割,以识别连接图谱中每个感兴趣区域的质心。为了减少计算量,将每个ROI组的质心随机分成10个子组。然后,对每个中心子组应用被试间层次聚类,然后再进行第二级聚类,为每个ROI组选择被试间最可重复的聚类。最后,根据它们连接的区域对类别进行标记,并进行聚类以创建最终的纤维束图。最终的图谱由525束沿整个大脑的浅表层短联络纤维组成,其中384束连接不同的ROI,141束连接相同ROI的部分。在三个不同的束图数据库上使用自动分割方法验证了束的可重复性。确定性和概率性追踪结果具有较高的可重现性,尤其是HCP数据中的概率性追踪。与之前的研究相比,我们的图谱具有更多的束和更大的皮层表面覆盖。
Abstract:
The study of short association fibers is still an incomplete task due to their higher inter-subject variability and the smaller size of this kind of fibers in comparison to known …
>>>
The study of short association fibers is still an incomplete task due to their higher inter-subject variability and the smaller size of this kind of fibers in comparison to known long association bundles. However, their description is essential to understand human brain dysfunction and better characterize the human brain connectome. In this work, we present a multi-subject atlas of short association fibers, which was computed using a superficial white matter bundle identification method based on fiber clustering. To create the atlas, we used probabilistic tractography from one hundred subjects from the HCP database, aligned with non-linear registration. The method starts with an intra-subject clustering of short fibers (30-85 mm). Based on a cortical atlas, the intra-subject cluster centroids from all subjects are segmented to identify the centroids connecting each region of interest (ROI) of the atlas. To reduce computational load, the centroids from each ROI group are randomly separated into ten subgroups. Then, an inter-subject hierarchical clustering is applied to each centroid subgroup, followed by a second level of clustering to select the most-reproducible clusters across subjects for each ROI group. Finally, the clusters are labeled according to the regions that they connect, and clustered to create the final bundle atlas. The resulting atlas is composed of 525 bundles of superficial short association fibers along the whole brain, with 384 bundles connecting pairs of different ROIs and 141 bundles connecting portions of the same ROI. The reproducibility of the bundles was verified using automatic segmentation on three different tractogram databases. Results for deterministic and probabilistic tractography data show high reproducibility, especially for probabilistic tractography in HCP data. In comparison to previous work, our atlas features a higher number of bundles and greater cortical surface coverage.
<<<
翻译
3.
大象城南
(2022-07-10 09:35):
#paper doi:10.1016/j.ymeth.2022.06.001 Methods, 2022. Structural and functional connectivity abnormalities of the default mode network in patients with Alzheimer's disease and mild cognitive impairment within two independent阿尔茨海默病 (AD) 是一种以进行性痴呆为特征的慢性神经退行性疾病,遗忘性轻度认知障碍 (aMCI) 已被定义为正常衰老和 AD 之间的过渡阶段。越来越多的证据表明,默认模式网络 (DMN) 中改变的功能连接 (FC) 和结构连接 (SC) 是 AD 的突出标志。然而,DMN 的 SC 和 FC 变化之间的关系尚不清楚。在本研究中,我们利用功能性磁共振成像 (fMRI) 和弥散加权成像 (DWI) 数据导出了 DMN 的 FC 和 SC 矩阵,并在 120 名参与者(39 名正常对照)的发现数据集中进一步评估了 FC 和 SC 异常, 34 名 aMCI 患者和 47 名 AD 患者), 以及 122 名参与者(43 名正常对照、37 名 aMCI 患者和 42 名 AD 患者)的复制数据集。在发现数据集中的 aMCI 和 AD 组患者的 DMN 成分(例如,后扣带皮层 (PCC)、内侧前额叶皮层 (mPFC) 和海马)中发现了中断的 SC 和 FC;在复制数据集中也发现了大部分中断的连接。更重要的是,一些 SC 和 FC 元素与 aMCI 和 AD 患者的认知能力显着相关。此外,我们发现 aMCI 和 AD 组患者的 PCC 和右侧海马体之间存在结构-功能脱钩。这些关于神经退行性队列中 DMN 连接性改变的发现加深了我们对 AD 病理生理机制的理解。37 名 aMCI 患者和 42 名 AD 患者)。在发现数据集中的 aMCI 和 AD 组患者的 DMN 成分(例如,后扣带皮层 (PCC)、内侧前额叶皮层 (mPFC) 和海马)中发现了中断的 SC 和 FC;在复制数据集中也发现了大部分中断的连接。更重要的是,一些 SC 和 FC 元素与 aMCI 和 AD 患者的认知能力显着相关。此外,我们发现 aMCI 和 AD 组患者的 PCC 和右侧海马体之间存在结构-功能脱钩。这些关于神经退行性队列中 DMN 连接性改变的发现加深了我们对 AD 病理生理机制的理解。37 名 aMCI 患者和 42 名 AD 患者)。在发现数据集中的 aMCI 和 AD 组患者的 DMN 成分(例如,后扣带皮层 (PCC)、内侧前额叶皮层 (mPFC) 和海马)中发现了中断的 SC 和 FC;在复制数据集中也发现了大部分中断的连接。更重要的是,一些 SC 和 FC 元素与 aMCI 和 AD 患者的认知能力显着相关。此外,我们发现 aMCI 和 AD 组患者的 PCC 和右侧海马体之间存在结构-功能脱钩。这些关于神经退行性队列中 DMN 连接性改变的发现加深了我们对 AD 病理生理机制的理解。发现数据集中 aMCI 和 AD 组患者的后扣带皮层 (PCC)、内侧前额叶皮层 (mPFC) 和海马体;在复制数据集中也发现了大部分中断的连接。更重要的是,一些 SC 和 FC 元素与 aMCI 和 AD 患者的认知能力显着相关。此外,我们发现 aMCI 和 AD 组患者的 PCC 和右侧海马体之间存在结构-功能脱钩。这些关于神经退行性队列中 DMN 连接性改变的发现加深了我们对 AD 病理生理机制的理解。发现数据集中 aMCI 和 AD 组患者的后扣带皮层 (PCC)、内侧前额叶皮层 (mPFC) 和海马体;在复制数据集中也发现了大部分中断的连接。更重要的是,一些 SC 和 FC 元素与 aMCI 和 AD 患者的认知能力显着相关。此外,我们发现 aMCI 和 AD 组患者的 PCC 和右侧海马体之间存在结构-功能脱钩。这些关于神经退行性队列中 DMN 连接性改变的发现加深了我们对 AD 病理生理机制的理解。在复制数据集中也发现了大部分中断的连接。更重要的是,一些 SC 和 FC 元素与 aMCI 和 AD 患者的认知能力显着相关。此外,我们发现 aMCI 和 AD 组患者的 PCC 和右侧海马体之间存在结构-功能脱钩。这些关于神经退行性队列中 DMN 连接性改变的发现加深了我们对 AD 病理生理机制的理解。在复制数据集中也发现了大部分中断的连接。更重要的是,一些 SC 和 FC 元素与 aMCI 和 AD 患者的认知能力显着相关。此外,我们发现 aMCI 和 AD 组患者的 PCC 和右侧海马体之间存在结构-功能脱钩。这些关于神经退行性队列中 DMN 连接性改变的发现加深了我们对 AD 病理生理机制的理解。
Abstract:
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia, and amnestic mild cognitive impairment (aMCI) has been defined as a transitional stage between normal aging and AD. …
>>>
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia, and amnestic mild cognitive impairment (aMCI) has been defined as a transitional stage between normal aging and AD. Accumulating evidence has shown that altered functional connectivity (FC) and structural connectivity (SC) in the default mode network (DMN) is the prominent hallmarks of AD. However, the relationship between the changes in SC and FC of the DMN is not yet clear. In the present study, we derived the FC and SC matrices of the DMN with functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI) data and further assessed FC and SC abnormalities within a discovery dataset of 120 participants (39 normal controls, 34 patients with aMCI and 47 patients with AD), as well as a replication dataset of 122 participants (43 normal controls, 37 patients with aMCI and 42 patients with AD). Disrupted SC and FC were found among DMN components (e.g., the posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), and hippocampus) in patients in the aMCI and AD groups in the discovery dataset; most of the disrupted connections were also identified in the replication dataset. More importantly, some SC and FC elements were significantly correlated with the cognitive ability of patients with aMCI and AD. In addition, we found structural-functional decoupling between the PCC and the right hippocampus in patients in the aMCI and AD groups. These findings of the alteration of DMN connectivity in neurodegenerative cohorts deepen our understanding of the pathophysiological mechanisms of AD.
<<<
翻译
4.
大象城南
(2022-07-10 09:29):
#paper doi:10.1111/epi.17320 Epilepsia, 2022. Development and validation of machine learning models for prediction of seizure outcome after pediatric epilepsy surgery. 小儿癫痫手术后报告的癫痫发作结果存在很大差异,并且缺乏可以评估术后癫痫发作自由概率的个体化预测工具。本研究的目的是开发和验证用于预测小儿癫痫手术后无癫痫发作的监督机器学习 (ML) 模型。这是一项针对在北美五个儿科癫痫中心接受癫痫手术的儿童的多中心回顾性研究。收集临床信息、诊断调查和手术特征,并将其用作预测术后 1 年无癫痫发作结果的特征。数据集被随机分成 80% 的训练数据和 20% 的测试数据。使用 10 倍交叉验证模型开发,在训练队列上评估了 5 个特征集和 7 个 ML 分类器的 35 个组合。在测试队列中评估 ML 分类器和特征集的最佳组合的性能,并与经典统计方法逻辑回归进行比较。在纳入的 801 名患者中,61.3% 的患者术后 1 年无癫痫发作。在模型开发过程中,最佳组合是 XGBoost ML 算法,它具有来自单变量特征集的五个特征,包括抗癫痫药物数量、磁共振成像病变、癫痫发作年龄、视频脑电图一致性和手术类型,平均面积低于0.73 的曲线 (AUC)(95% 置信区间 [CI] = .69–.77)。然后在测试队列上评估 XGBoost 和单变量特征集的组合并达到 0.74 的 AUC(95% CI = .66–.82;敏感性 = .87,95% CI = .81–.94;特异性 = .58, 95% CI = .47–.71)。XGBoost 模型优于逻辑回归模型(AUC = .72, 95% CI = .63–.80;敏感性 = .72, 95% CI = .63–.82;特异性 = .66, 95% CI = .53 –.77) 在测试队列 (p = .005)。本研究确定了重要特征并验证了用于预测小儿癫痫手术后无癫痫发作概率的 ML 算法 XGBoost。改善癫痫手术的预后对于术前咨询至关重要,并将为治疗决策提供信息。
Abstract:
OBJECTIVE: There is substantial variability in reported seizure outcome following pediatric epilepsy surgery, and lack of individualized predictive tools that could evaluate the probability of seizure freedom postsurgery. The aim …
>>>
OBJECTIVE: There is substantial variability in reported seizure outcome following pediatric epilepsy surgery, and lack of individualized predictive tools that could evaluate the probability of seizure freedom postsurgery. The aim of this study was to develop and validate a supervised machine learning (ML) model for predicting seizure freedom after pediatric epilepsy surgery.METHODS: This is a multicenter retrospective study of children who underwent epilepsy surgery at five pediatric epilepsy centers in North America. Clinical information, diagnostic investigations, and surgical characteristics were collected, and used as features to predict seizure-free outcome 1 year after surgery. The dataset was split randomly into 80% training and 20% testing data. Thirty-five combinations of five feature sets with seven ML classifiers were assessed on the training cohort using 10-fold cross-validation for model development. The performance of the optimal combination of ML classifier and feature set was evaluated in the testing cohort, and compared with logistic regression, a classical statistical approach.RESULTS: Of the 801 patients included, 61.3% were seizure-free 1 year postsurgery. During model development, the best combination was XGBoost ML algorithm with five features from the univariate feature set, including number of antiseizure medications, magnetic resonance imaging lesion, age at seizure onset, video-electroencephalography concordance, and surgery type, with a mean area under the curve (AUC) of .73 (95% confidence interval [CI] = .69-.77). The combination of XGBoost and univariate feature set was then evaluated on the testing cohort and achieved an AUC of .74 (95% CI = .66-.82; sensitivity = .87, 95% CI = .81-.94; specificity = .58, 95% CI = .47-.71). The XGBoost model outperformed the logistic regression model (AUC = .72, 95% CI = .63-.80; sensitivity = .72, 95% CI = .63-.82; specificity = .66, 95% CI = .53-.77) in the testing cohort (p = .005).SIGNIFICANCE: This study identified important features and validated an ML algorithm, XGBoost, for predicting the probability of seizure freedom after pediatric epilepsy surgery. Improved prognostication of epilepsy surgery is critical for presurgical counseling and will inform treatment decisions.
<<<
翻译
5.
大象城南
(2022-06-27 10:28):
#paper doi: 10.1002/nbm.1579 NMR in Biomedicine, 2022, Mapping brain anatomical connectivity using white matter tractography. 人类大脑中的神经过程的整合是通过存在于不同神经中枢之间的相互连接来实现的。这些相互联系通过白质途径发生。白质纤维束追踪术是目前唯一一种在体内无创重建人脑解剖连接的技术。从神经束的局部方向估计白质通路的轨迹和终止。这些方向是通过测量脑内水扩散得到的。本文综述了利用脑内扩散测量来估计纤维方向的技术。描述了白质束摄影的方法,以及该技术目前的局限性,包括对图像噪声和部分体积的敏感性。讨论了白质束摄影在白质连接的地形表征、特定白质通路的分割以及相应的灰质功能单元等方面的应用。在此背景下,本文描述了白质束成像在绘制人脑功能系统和子系统及其相互关系方面的潜在影响。最后,讨论了白质束成像在脑疾病研究中的应用,包括肿瘤影响的脑纤维束定位和神经和神经精神疾病中连接通路受损的识别。
Abstract:
Integration of the neural processes in the human brain is realized through interconnections that exist between different neural centers. These interconnections take place through white matter pathways. White matter tractography …
>>>
Integration of the neural processes in the human brain is realized through interconnections that exist between different neural centers. These interconnections take place through white matter pathways. White matter tractography is currently the only available technique for the reconstruction of the anatomical connectivity in the human brain noninvasively and in vivo. The trajectory and terminations of white matter pathways are estimated from local orientations of nerve bundles. These orientations are obtained using measurements of water diffusion in the brain. In this article, the techniques for estimating fiber directions from diffusion measurements in the human brain are reviewed. Methods of white matter tractography are described, together with the current limitations of the technique, including sensitivity to image noise and partial voluming. The applications of white matter tractography to the topographical characterization of the white matter connections and the segmentation of specific white matter pathways, and corresponding functional units of gray matter, are discussed. In this context, the potential impact of white matter tractography in mapping the functional systems and subsystems in the human brain, and their interrelations, is described. Finally, the applications of white matter tractography to the study of brain disorders, including fiber tract localization in brains affected by tumors and the identification of impaired connectivity routes in neurologic and neuropsychiatric diseases, are discussed.
<<<
翻译
6.
大象城南
(2022-05-31 22:41):
#paper: doi.org/10.1016/j.neuroimage.2012.10.022 扩散加权 (DW) MRI 有助于对组织微观结构进行无创量化,并结合适当的信号处理,对纤维方向进行三维估计。近年来,人们的注意力已经从扩散张量模型转移到更复杂的高角分辨率扩散成像 (HARDI) 分析技术,该模型假设单峰高斯扩散位移分布来恢复纤维取向(具有各种有据可查的限制)。 球面反卷积 (SD) 方法假设体素内的纤维取向密度函数 (fODF) 可以通过从观察到的 DW 信号集中对“普通”单纤维响应函数进行反卷积来获得。在实践中,这种常见的响应函数是先验未知的,因此必须使用估计的纤维响应。在这里,这种单纤维响应函数的建立被称为“校准”。这项工作检查了两种不同的 SD 方法对不适当的响应函数校准的脆弱性:(1) 约束球谐反卷积 (CSHD) - 一种利用球谐基组的技术和 (2) 阻尼 Richardson-Lucy (dRL) 反卷积 - 一种技术基于标准的 Richardson-Lucy 反卷积。 通过模拟,研究了在单光纤和交叉光纤配置中校准的扩散剖面与观察到的(“目标”)DW 信号之间的差异的影响。结果表明,随着校准和目标响应之间的差异增加,CSHD 会产生虚假 fODF 峰(与众所周知的振铃伪影一致),而 dRL 对误校准表现出较低的整体敏感性(对于高度各向异性光纤的校准响应函数为最佳)。然而,与 CSHD 相比,dRL 显示出解决低各向异性交叉纤维的能力降低。得出的结论是,必须仔细考虑图像中预期单纤维各向异性的范围和空间分布,以确保选择适当的算法、参数和校准。未能仔细选择校准响应函数可能会严重影响任何最终纤维束成像的质量。
IF:4.700Q1
NeuroImage,
2013-Jan-15.
DOI: 10.1016/j.neuroimage.2012.10.022
PMID: 23085109
PMCID:PMC3580290
Abstract:
Diffusion weighted (DW) MRI facilitates non-invasive quantification of tissue microstructure and, in combination with appropriate signal processing, three-dimensional estimates of fibrous orientation. In recent years, attention has shifted from the …
>>>
Diffusion weighted (DW) MRI facilitates non-invasive quantification of tissue microstructure and, in combination with appropriate signal processing, three-dimensional estimates of fibrous orientation. In recent years, attention has shifted from the diffusion tensor model, which assumes a unimodal Gaussian diffusion displacement profile to recover fibre orientation (with various well-documented limitations), towards more complex high angular resolution diffusion imaging (HARDI) analysis techniques. Spherical deconvolution (SD) approaches assume that the fibre orientation density function (fODF) within a voxel can be obtained by deconvolving a 'common' single fibre response function from the observed set of DW signals. In practice, this common response function is not known a priori and thus an estimated fibre response must be used. Here the establishment of this single-fibre response function is referred to as 'calibration'. This work examines the vulnerability of two different SD approaches to inappropriate response function calibration: (1) constrained spherical harmonic deconvolution (CSHD)--a technique that exploits spherical harmonic basis sets and (2) damped Richardson-Lucy (dRL) deconvolution--a technique based on the standard Richardson-Lucy deconvolution. Through simulations, the impact of a discrepancy between the calibrated diffusion profiles and the observed ('Target') DW-signals in both single and crossing-fibre configurations was investigated. The results show that CSHD produces spurious fODF peaks (consistent with well known ringing artefacts) as the discrepancy between calibration and target response increases, while dRL demonstrates a lower over-all sensitivity to miscalibration (with a calibration response function for a highly anisotropic fibre being optimal). However, dRL demonstrates a reduced ability to resolve low anisotropy crossing-fibres compared to CSHD. It is concluded that the range and spatial-distribution of expected single-fibre anisotropies within an image must be carefully considered to ensure selection of the appropriate algorithm, parameters and calibration. Failure to choose the calibration response function carefully may severely impact the quality of any resultant tractography.
<<<
翻译
7.
大象城南
(2022-04-30 14:19):
#paper https://doi.org/10.1002/hbm.25739 推测为血管源性的脑白质高信号(WMH)常在健康老年人群的MRI上有发现。WMH还与衰老和认知能力下降有关。本文使用包含认知健康老年人MRI数据的纵向数据集(基线N=231人,年龄范围在64~87岁之间),比较并验证了FreeSurfer (T1w)、UBO Detector (T1W + FLAIR)和FSL-BIANCA(T1w+FLAIR)三种脑白质高信号提取的算法的有效性。作为参考,我们在T1w、3D (3D) FLAIR和二维(2D) FLAIR图像中手动分割WMH,并用于评估不同自动化算法的分割精度。此外,我们评估了算法提供的WMH体积与Fazekas评分和年龄的关系。FreeSurfer低估了WMH的体积,其骰子相似系数最差(DSC = 0.434),但其WMH的体积与Fazekas得分有很强的相关性(rs = 0.73)。BIANCA在3D FLAIR图像中实现了最高DSC(0.602)。然而,在2D FLAIR图像中(rs = 0.41),与Fazekas得分的关系仅为中等,在探索人体内轨迹时检测到许多异常值WMH体积(2D FLAIR: ~30%)。UBO Detector在DSC中与BIANCA在两种模式下的表现相似,在2D FLAIR(0.531)中达到了最佳DSC,无需定制训练数据集。此外,它与Fazekas评分有很高的相关性(2D FLAIR: rs = 0.80)。总之,我们的结果强调了仔细考虑选择的WMH分割算法和mr模态的重要性。
Abstract:
White matter hyperintensities (WMH) of presumed vascular origin are frequently found in MRIs of healthy older adults. WMH are also associated with aging and cognitive decline. Here, we compared and …
>>>
White matter hyperintensities (WMH) of presumed vascular origin are frequently found in MRIs of healthy older adults. WMH are also associated with aging and cognitive decline. Here, we compared and validated three algorithms for WMH extraction: FreeSurfer (T1w), UBO Detector (T1w + FLAIR), and FSL's Brain Intensity AbNormality Classification Algorithm (BIANCA; T1w + FLAIR) using a longitudinal dataset comprising MRI data of cognitively healthy older adults (baseline N = 231, age range 64-87 years). As reference we manually segmented WMH in T1w, three-dimensional (3D) FLAIR, and two-dimensional (2D) FLAIR images which were used to assess the segmentation accuracy of the different automated algorithms. Further, we assessed the relationships of WMH volumes provided by the algorithms with Fazekas scores and age. FreeSurfer underestimated the WMH volumes and scored worst in Dice Similarity Coefficient (DSC = 0.434) but its WMH volumes strongly correlated with the Fazekas scores (r = 0.73). BIANCA accomplished the highest DSC (0.602) in 3D FLAIR images. However, the relations with the Fazekas scores were only moderate, especially in the 2D FLAIR images (r = 0.41), and many outlier WMH volumes were detected when exploring within-person trajectories (2D FLAIR: ~30%). UBO Detector performed similarly to BIANCA in DSC with both modalities and reached the best DSC in 2D FLAIR (0.531) without requiring a tailored training dataset. In addition, it achieved very high associations with the Fazekas scores (2D FLAIR: r = 0.80). In summary, our results emphasize the importance of carefully contemplating the choice of the WMH segmentation algorithm and MR-modality.
<<<
翻译
8.
大象城南
(2022-03-14 11:32):
#paper doi:10.1186/s12938-020-00786-z 这篇文章主要介绍了被试间浅表层短联络纤维束自动聚类和标记算法。我们知道目前弥散加权磁共振成像是唯一能在活体状态下检测大脑白质纤维束走向的一种技术,以往的大部分脑白质纤维束追踪主要关注在深部走行的白质束,这些深层白质具有比较高的解剖一致性,被试间变异性较小,因此成熟的纤维束追踪算法和聚类算法可以很好地将深层白质分割成不同解剖位置的纤维束。基于深层白质的一些列研究(如脑发育,脑疾病异常的研究)均已经取得了很多突破和进展。然而浅表层纤维束由于其解剖结构比较复杂(大脑皮层有很多的沟回褶皱),且不同人大脑皮层形态差异性较大。因此常规的在深层白质追踪的算法直接套用在浅表层纤维束追踪往往是不合适的,且假阳性较高。本文基于匈牙利算法和Quick Bundle算法,对20个被试的dMRI进行浅表层纤维束追踪,并且建立了自动纤维聚类的方法,使得未来对浅表层白质纤维的挖掘提供了更精准的算法。他们的结果表明匈牙利算法虽然聚类后的质量较高,但是可重复性较差,而Quick Bundle算法具有较高的可重复性,能比较好地刻画群组之间的浅表层纤维束解剖特点。
IF:2.900Q3
Biomedical engineering online,
2020-Jun-03.
DOI: 10.1186/s12938-020-00786-z
PMID: 32493483
Abstract:
BACKGROUND: Diffusion MRI is the preferred non-invasive in vivo modality for the study of brain white matter connections. Tractography datasets contain 3D streamlines that can be analyzed to study the …
>>>
BACKGROUND: Diffusion MRI is the preferred non-invasive in vivo modality for the study of brain white matter connections. Tractography datasets contain 3D streamlines that can be analyzed to study the main brain white matter tracts. Fiber clustering methods have been used to automatically group similar fibers into clusters. However, due to inter-subject variability and artifacts, the resulting clusters are difficult to process for finding common connections across subjects, specially for superficial white matter.METHODS: We present an automatic method for labeling of short association bundles on a group of subjects. The method is based on an intra-subject fiber clustering that generates compact fiber clusters. Posteriorly, the clusters are labeled based on the cortical connectivity of the fibers, taking as reference the Desikan-Killiany atlas, and named according to their relative position along one axis. Finally, two different strategies were applied and compared for the labeling of inter-subject bundles: a matching with the Hungarian algorithm, and a well-known fiber clustering algorithm, called QuickBundles.RESULTS: Individual labeling was executed over four subjects, with an execution time of 3.6 min. An inspection of individual labeling based on a distance measure showed good correspondence among the four tested subjects. Two inter-subject labeling were successfully implemented and applied to 20 subjects and compared using a set of distance thresholds, ranging from a conservative value of 10 mm to a moderate value of 21 mm. Hungarian algorithm led to a high correspondence, but low reproducibility for all the thresholds, with 96 s of execution time. QuickBundles led to better correspondence, reproducibility and short execution time of 9 s. Hence, the whole processing for the inter-subject labeling over 20 subjects takes 1.17 h.CONCLUSION: We implemented a method for the automatic labeling of short bundles in individuals, based on an intra-subject clustering and the connectivity of the clusters with the cortex. The labels provide useful information for the visualization and analysis of individual connections, which is very difficult without any additional information. Furthermore, we provide two fast inter-subject bundle labeling methods. The obtained clusters could be used for performing manual or automatic connectivity analysis in individuals or across subjects.
<<<
翻译
9.
大象城南
(2022-02-27 21:46):
#paper doi:10.1016/j.neuroimage.2011.01.055 一种改进的对电生理数据计算信号之间相位同步方法——加权相位延迟指数,可以有效避免容积导电现象。这篇文章作者主要提出了一种更加鲁棒的功能连接度量方法。通常我们从LFP、EEG或MEG信号中测量神经元群之间的相互作用时,会采用诸如相位同步,相位相干的计算方法。然而由于空间分辨率并没有接近皮层下神经元的分布,且在头皮测量的EEG和MEG信号会经过颅骨,脑脊液衰减,这种会引起皮层下神经元群的信号在脑皮层测量的信号之间混杂着交互,从而使得度量真实的功能连接不准确。尽管之前有研究者提出虚部相干指数和相位延迟指数,但其要么无法准确度量噪声无关的信号相位的延迟或超前,要么对一些小的相位扰动不敏感,此外也会受到样本量大小产生偏差。为了解决这个问题,作者提出了加权的相位延迟指数具有无偏性,比前人提出的指标更能有效避免容积导电现象。目前该文章被引用900多次。
Abstract:
Phase-synchronization is a manifestation of interaction between neuronal groups measurable from LFP, EEG or MEG signals, however, volume conduction can cause the coherence and the phase locking value to spuriously …
>>>
Phase-synchronization is a manifestation of interaction between neuronal groups measurable from LFP, EEG or MEG signals, however, volume conduction can cause the coherence and the phase locking value to spuriously increase. It has been shown that the imaginary component of the coherency (ImC) cannot be spuriously increased by volume-conduction of independent sources. Recently, it was proposed that the phase lag index (PLI), which estimates to what extent the phase leads and lags between signals from two sensors are nonequiprobable, improves on the ImC. Compared to ImC, PLI has the advantage of being less influenced by phase delays. However, sensitivity to volume-conduction and noise, and capacity to detect changes in phase-synchronization, is hindered by the discontinuity of the PLI, as small perturbations turn phase lags into leads and vice versa. To solve this problem, we introduce a related index, namely the weighted phase lag index (WPLI). Differently from PLI, in WPLI the contribution of the observed phase leads and lags is weighted by the magnitude of the imaginary component of the cross-spectrum. We demonstrate two advantages of the WPLI over the PLI, in terms of reduced sensitivity to additional, uncorrelated noise sources and increased statistical power to detect changes in phase-synchronization. Another factor that can affect phase-synchronization indices is sample-size bias. We show that, when directly estimated, both PLI and the magnitude of the ImC have typically positively biased estimators. To solve this problem, we develop an unbiased estimator of the squared PLI, and a debiased estimator of the squared WPLI.
<<<
翻译