来自用户 Donny 的文献。
当前共找到 2 篇文献分享。
1.
Donny (2022-03-31 23:39):
#paper Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer  DOI: 10.1158/1078-0432.CCR-17-0853 识别肝细胞癌(HCC)鲁棒的生存亚组对于改善病人护理十分重要。当前,仍然缺乏整合多组学数据以从不同病人队列中明确预测HCC生存状况的尝试。为了填补这一空白,作者开发了针对HCC基于深度学习的模型并能够鲁棒地将病人的生存亚群分为六个队列。作者使用来自TCGA的RNA-seq、miRNA-seq和甲基化数据构建了基于深度学习的生存敏感的模型。该模型对预后的预测能够取得与同时考虑基因组与临床数据的模型相当的效果。该基于深度学习的模型提供了两个有明显生存区别和模型拟合的最优的病人亚组。更为恶性的亚型与频繁的TP53抑制突变、干细胞特性标志物(KRT19、EPCAM)及肿瘤标志物(BIRC5)的高表达及Wnt和Akt信号通路的激活相关。作者在五个不同组学数据类型的外部数据集上验证了该多组学模型,LIRI-JP队列(n=230,C-index=0.75),NCI队列(n=221, C-index=0.67),Chinese队列(n=166,C-index=0.69),E-TABM-36 队列(n=40, C-index=0.77)及Hawaiian队列(n=27, C-index=0.82)。这是第一次采用深度学习来识别与HCC病人不同生存相关联的多组学特征的研究。考虑到该模型在不同队列的鲁棒性,研究人员期望该工作流能够对HCC预后的预测发挥作用。
Abstract:
Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient cohorts is lacking. … >>>
Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient cohorts is lacking. To fill this gap, we present a deep learning (DL)-based model on HCC that robustly differentiates survival subpopulations of patients in six cohorts. We built the DL-based, survival-sensitive model on 360 HCC patients' data using RNA sequencing (RNA-Seq), miRNA sequencing (miRNA-Seq), and methylation data from The Cancer Genome Atlas (TCGA), which predicts prognosis as good as an alternative model where genomics and clinical data are both considered. This DL-based model provides two optimal subgroups of patients with significant survival differences ( = 7.13e-6) and good model fitness [concordance index (C-index) = 0.68]. More aggressive subtype is associated with frequent inactivation mutations, higher expression of stemness markers ( and ) and tumor marker , and activated Wnt and Akt signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-JP cohort ( = 230, C-index = 0.75), NCI cohort ( = 221, C-index = 0.67), Chinese cohort ( = 166, C-index = 0.69), E-TABM-36 cohort ( = 40, C-index = 0.77), and Hawaiian cohort ( = 27, C-index = 0.82). This is the first study to employ DL to identify multi-omics features linked to the differential survival of patients with HCC. Given its robustness over multiple cohorts, we expect this workflow to be useful at predicting HCC prognosis prediction. . <<<
翻译
2.
Donny (2022-01-22 21:24):
#paper doi:10.1016/j.ccell.2021.04.014 Conserved pan-cancer microenvironment subtypes predict response to immunotherapy 这是一篇MD Anderson和Boston Gene去年做的泛癌免疫分型的论文,作者先定义了20多个涉及肿瘤免疫相关特征的基因集,然后使用UCSC Xena的TCGA多种瘤种样本的TOIL RSEM标准化后的基因表达数据,使用ssGSEA算法计算特征基因集的富集打分,并针对瘤种内样本进行MAD标准化,并使用Louvain聚类进而将所有样本分为四大免疫亚型,分别是:免疫富集型、免疫富集纤维化型、纤维化型和免疫沙漠型。这四种分型依次表现为免疫浸润减少,免疫原性降低。这四个分型同时和之前所做的TCIA数据库的6种亚型分型基本一致,也从通路活性、关键肿瘤免疫指标、生存分析、HE免疫细胞数量、临床免疫治疗队列疗效等进行了多方面的佐证。
IF:48.800Q1 Cancer cell, 2021-06-14. DOI: 10.1016/j.ccell.2021.04.014 PMID: 34019806
Abstract:
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the … >>>
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classification by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immunotherapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types due to the inclusion of malignant and microenvironment components. A visual tool integrating transcriptomic and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, immune composition, anti-tumor immunity, and immunosuppressive escape mechanisms. Integrative analyses plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens. <<<
翻译
回到顶部