当前共找到 1106 篇文献分享,本页显示第 1081 - 1100 篇。
1081.
张浩彬 (2022-02-27 21:33):
#paper doi:10.13546/j.cnki.tjyjc.2017.01.001 基于平衡轮换样本调查的时间序列建模 师门主要是研究抽样技术的,奈何自己关于统计抽样确实没啥储备,只能找些基础性的文章看看。本篇文章介绍了在平衡轮换样本中,如何进行实行时间序列建模。轮换样本,指的是在连续性抽样中,对每期样本进行更新轮换。这种样本抽取方式,有别于一次性抽样调查,因此如何选择合适的估计及建模方式则更加重要。本文应该说是无论是抽样方式,还是估计方法(状态空间模型+卡尔曼滤波)都算是比较经典的方法吧,最后的模型对比则用的是数值模拟的方法,这一点没太大体会。看完之后,还是感觉统计调查方法如何在当前的背景下,有新的突破,还真是不容易。
Abstract:
连续性抽样调查由于能够描述目标总体随时间的动态变化过程,吸引了越来越多国内外学者的关注。国外连续性抽样的研究已经十分成熟,在已知的轮换模式下,建立合适的模型,使得模型能较好地描述数据的真实生成过程,从而得到精度更高的目标估计量。文章建立一般轮换模式rm1rm- 12下的时间序列模型,然后以6362模式为例,利用状态空间模型和卡尔曼滤波,给出已有信息下的最优估计,有效减少抽样误差,提高样本的估计精度。 >>>
连续性抽样调查由于能够描述目标总体随时间的动态变化过程,吸引了越来越多国内外学者的关注。国外连续性抽样的研究已经十分成熟,在已知的轮换模式下,建立合适的模型,使得模型能较好地描述数据的真实生成过程,从而得到精度更高的目标估计量。文章建立一般轮换模式rm1rm- 12下的时间序列模型,然后以6362模式为例,利用状态空间模型和卡尔曼滤波,给出已有信息下的最优估计,有效减少抽样误差,提高样本的估计精度。 <<<
翻译
1082.
魏魏魏 (2022-02-27 13:29):
#paper doi:10.3390/ijerph120201412 International Journal of Environmental Research and Public Health, (2015), Correlation between Family Environment and Suicidal Ideation in University Students in China. 这篇文章探讨了中国大学生家庭环境与自杀意向的关系。最后发现,有自杀意向的学生有很大的相似性,比如家庭结构和家庭关系糟糕,家庭社会经济地位较差,父母的教养方式有问题。再有女大学生的自杀意向要比男大学生有更多。家庭环境,或者说原生家庭对个体发展真的很重要。
Abstract:
BACKGROUND: This study investigated the association between suicidal ideation and family environment. The sample included 5183 Chinese university students. A number of studies on suicidal ideation have focused on individuals … >>>
BACKGROUND: This study investigated the association between suicidal ideation and family environment. The sample included 5183 Chinese university students. A number of studies on suicidal ideation have focused on individuals rather than families. This paper reviews the general principles of suicidal ideation and the consequences resulting from the family environment.METHODS: This study used six different colleges as the dataset, which included 2645 males and 2538 females. Students were questioned with respect to social demographics and suicidal ideation factors. The data were analyzed with factor and logistic analyses to determine the association between suicidal ideation and poor family environment.RESULTS: The prevalence of suicidal ideation was 9.2% (476/5183). Most participants with suicidal ideation had significant similarities: they had poor family structures and relationships, their parents had unstable work, and their parents used improper parenting styles. Female students were more likely to have suicidal thoughts than male students.CONCLUSIONS: This study shows that suicidal ideation is a public health issue among Chinese university students and demonstrates the importance of considering the family environment when examining university students' suicidal ideation. Understanding family-related suicidal ideation risk factors can help to predict and prevent suicides among university students. <<<
翻译
1083.
李翛然 (2022-02-27 09:48):
#paper doi 10.1002 : Image2SMILES: Transformer-Based Molecular Optical Recognition Engine (2022) https://doi.org/10.1002/cmtd.202100069 这篇文章主要讲述了如何利用transformer 模型将文献中的化学分子式识别并转换为可以进一步分析用的smiles结构。这项技术算是一个比较“有则更好,无则也能抗的过去”的模型,因为需要进行smiles识别的分子,其肯定基本上都会被关注到论文和结构价值。但是,关注到之后,相关有经验的化学专家看一眼图像就知道里面的问题,和结构细节。 那至于如何找到有价值的化学结构,其实又是NLP读取论文的事情了。所以这个技术我觉得有点鸡肋,北京的望石科技就是干这个的。
1084.
小W (2022-02-22 18:02):
#paper doi 10.1038 : A knowledge graph to interpret clinical proteomics data. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-021-01145-6这篇文章发布了一个临床知识图谱 (CKG),这是一个开源平台,目前包含近 2000 万个节点和 2.2 亿个关系,包括相关的实验数据、公共数据库和文献。CKG 图结构提供了一个灵活的数据模型,当新数据库可用时,该模型很容易扩展到新节点和关系。CKG 结合了统计和机器学习算法,可加速典型蛋白质组学工作流程的分析和解释。CKG 在 21 年初的时候就已经开源相关代码和数据库文件,当时我测试了相关的分析脚本还有蛮大问题,发表文章后又有一些新的不成熟的看法。另外一个阿斯利康的图谱文章写得对生信还蛮有收获。doi 10.1101 Biological Insights Knowledge Graph: an integrated knowledge graph to support drug development​
IF:33.100Q1 Nature biotechnology, 2022-05. DOI: 10.1038/s41587-021-01145-6 PMID: 35102292
Abstract:
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of … >>>
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making. <<<
翻译
1085.
物品师 (2022-02-21 05:03):
#paper doi.10.48550 [arxiv.2111.08575] 标题GRI: General Reinforced Imitation and its Application to Vision-Based Autonomous Driving作者Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, Fabien Moutarde领域Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV).链接https://arxiv.org/abs/2111.08575引用arXiv:2111.08575 [cos.RO](or arXiv:2111.08575v1 [cs.RO] for this version) https://doi.org/10.48550/arXiv.2111.08575摘要:深度强化学习 (DRL) 已被证明对自动驾驶和机器人等多种复杂决策应用程序有效。 然而,众所周知,DRL 因其高样本复杂性和缺乏稳定性而受到限制。 先验知识,例如 作为专家演示,通常可用,但难以利用来缓解这些问题。 在本文中,我们提出了通用强化模仿 (GRI),这是一种结合了探索和专家数据的好处的新方法,并且可以直接在任何非策略 RL 算法上实现。 我们做了一个简化的假设:专家演示可以被视为完美的数据,其基础策略会获得持续的高回报。 基于这个假设,GRI 引入了离线演示代理的概念。 该代理发送专家数据,这些数据与来自在线 RL 探索代理的经验同时处理且无法区分。 我们表明,我们的方法可以在城市环境中对基于视觉的自动驾驶进行重大改进。 我们进一步验证了具有不同离策略 RL 算法的 Mujoco 连续控制任务的 GRI 方法。 我们的方法在 CARLA 排行榜上排名第一,并且比之前最先进的 World on Rails 的性能高出 17%。
1086.
刑无刀 (2022-02-20 22:57):
#paper arXiv:2010.06002 Thinking Fast and Slow in AI 这篇论文主要是为AI下一步发展提出了一个研究方向,灵感和思路来自认知科学领域著名的《思考,快与慢》,后者提出人的认知决策有两个系统,系统1是快速反应,下意识的感知层,系统2是需要经过理性计算、推理,综合更多信息后作出反应的慢系统。作者提出,AI应该是综合“快慢”两者才能更接近的通用智能,系统1对应感知算法,通过深度学习等方法,已经取得突破,而用于推理、计算、决策的慢系统,则需要借助符号系统等方法,有一定的时序性,两者结合,才能更接近真正能够“思考”的智能。基于上述设想,作者提出了10个可能的研究问题,简单列举几个如下: 1. 我们能够清晰地区分AI中的系统1和系统2的能力吗?他们各自的特征是什么?就只有这两类能力吗?还是会有更多能力? 2. 系统2的顺序性(表现为无法并行)是一个bug还是一个feature?我们 应该诉诸机器给系统2发展多线程推理能力吗?如果是这样,结合了机器强大的计算能力,是否能够补偿AI某些方面的缺陷? 3. 综合了系统1和系统2(机器学习和符号逻辑)的AI,用什么评价指标来度量其表现?这些指标应该因任务不同和组合方法不同而不同吗?
Abstract: No abstract available.
1087.
白义民 (2022-02-20 22:42):
#paper 《本体论的困难及其出路》。作者简单的阐明了,哲学中不存在通识意义上的本体。《本体论的困难及其出路_赵汀阳.pdf》
哲学研究, 1990.
Abstract: No abstract available.
1088.
错别字先生 (2022-02-20 19:23):
德国数学物理哲学家在70多岁发表了关于非定域的真空如何涨落出现粒子,提出可分裂的不确定性概念并且用数学拓扑中的模去表达。这篇文章我在第三届全国物理哲学会议上做了报告。这位德国哲学家提出共形无背景格点理论是在2010年发表的翻译文章有七万汉字分上下两篇。ADs-CFT 理论。模的概念是对应环中的空洞数量的数学描述。比如茶杯轮胎的眼。拓扑是茶杯和轮胎的变形关系映射。分享链接:https://sz.tyust.edu.cn/info/1148/1809.htm
1089.
龙海晨 (2022-02-16 00:55):
#paper doi:10.1126/science.aah5869 Science, 2016, Generation of influenza A viruses as live but replication-incompetent virus vaccines 。推荐理由。”通过反向遗传学设计研制甲型流感病毒疫苗的论文。研究解决的问题: 1.可以快速大量生产活病毒疫苗(RNA) 2.信使RNA中引入了一个终止密码子让病毒失去复制能力(与之前的方法相比便宜高效) 3.插入位置在保守区,病毒若通过突变的形式恢复制能力会直接死亡 4.技术的核心:拥有用于病毒恢复复制能力的细胞系用于生产病毒,作为疫苗。病毒离开专门细胞系后丧失复制能力。 5.意外的收获:可以当治疗药物使用。新的病毒和野生型结合会使野生型病毒消失。(之前的技术常发生:活疫苗病毒与野生病毒相遇结果活疫苗产生毒性)。通过在(甲型)流感病毒的信使RNA中引入了一个终止密码子,并保留病毒的完整结构。这样,保留了感染性的病毒进入人体后,可以激活人体细胞的全部免疫反应,但由于终止密码子的存在,病毒无法进行蛋白质翻译,因而失去复制能力。
Science (New York, N.Y.), 2016-12-02. PMID: 27934767
Abstract:
The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A … >>>
The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. <<<
翻译
1090.
魏魏魏 (2022-02-14 11:20):
#paper doi:10.1016/j.dcn.2020.100852 Developmental Cognitive Neuroscience, 2020, The association between parenting and the error-related negativity across childhood and adolescence。此前,关于父母教养方式的研究大多采用问卷法和观察法此类经典的心理学研究方法,很少有将其与生理指标关联的研究。焦虑障碍与一个脑电指标错误相关负电位(Error-related negativity, ERN)相关,焦虑个体的ERN的升高通常意味着焦虑障碍的出现,已有的元分析也表明,ERN与焦虑可能存在中等水平的相关效应。该研究将其与父母的教养方式这一能够诱发焦虑的环境因素联系到一起,探讨了严厉的威权型教养方式是否会影响ERN。基于女性青少年的研究发现,年龄会调节威权型教养方式与ERN的关系,年龄越大,这一关系越不明显。这一结果为焦虑儿童的干预提供了启发。
Abstract:
Anxiety is the most common form of psychopathology, and it is often characterized by chronic impairment across the lifespan. Researchers have identified core neural markers that confer risk for anxious … >>>
Anxiety is the most common form of psychopathology, and it is often characterized by chronic impairment across the lifespan. Researchers have identified core neural markers that confer risk for anxious outcomes. An increased error-related negativity (ERN) in anxious individuals has been shown to prospectively predict onset of anxiety disorders across development. Hence, it is critical to examine environmental factors that may shape the ERN. In the current study, we use a large sample of 170 female adolescents aged 10-17 to investigate whether the ERN mediates the relationship between parenting style and anxiety diagnostic status. This study replicates previous findings, and it extends previous work by suggesting that this relationship is more robust in young children as compared to adolescents. Interventions targeting the ERN via parenting may be most effective during childhood. <<<
翻译
1091.
数据简化社区(秦陇纪) (2022-02-13 10:29):
#paper ArXiv:2202.02435v1 [cs.LG] On Neural Differential Equations. 牛津大学数学研究所帕特里克·基格尔(Patrick Kidger)的博士学位论文The webpage at https://arxiv.org/pdf/2202.02435v1.pdf,参考链接https://www.maths.ox.ac.uk/people/patrick.kidger,https://www.reddit.com/r/MachineLearning/comments/snmtzn/r_phd_thesis_on_neural_differential_equations/。 一、这篇231页的博士论文专门探讨神经微分方程(neural ODE),主要内容包括如下:①神经常微分方程(neural ordinary diffeqs):用于学习物理系统,作为离散架构的连续时间限制,包括对可表达性的理论结果;②神经受控微分方程(neural controlled diffeqs):用于建模时间序列函数、处理不规则数据;③神经随机微分方程(neural stochastic diffeqs):用于从复杂的高维随机动态中采样;④数值法(numerical methods):一类新的可逆微分方程求解器或布朗重建(Brownian reconstruction)问题。 二、论文中归纳神经微分方程(neural differential equation, NDEs)的 4 个主要应用为:①物理建模;②时间序列;③生成式建模;④一种开发深度学习模型的策略:取适当的微分方程并将其离散化。 三、用于神经微分方程的数值求解和训练的软件包目前已经进行了标准化,文中提供了几种选择供读者使用:1.在JAX生态系统 [Bra+18] 的Diffrax, https://github.com/patrick-kidger/diffrax;2.在PyTorch生态系统 [Pas+19] 中的torchdiffeq、torchcde 和 torchsde 系列库, https://github.com/rtqichen/torchdiffeq,https://github.com/patrick-kidger/torchcde ,https://github.com/google-research/torchsde ,https://github.com/DiffEqML/torchdyn ;3.在Julia [Bez+17] 生态系统中的 DifferentialEquations.jl, https://github.com/SciML/DifferentialEquations.jl 。
Abstract: No abstract available.
1092.
十年 (2022-02-12 20:00):
#paper doi:10.1038/s41586-021-04223-6 Wright et al., Deep physical neural networks trained with backpropagation. Nature 601,549-555(2022) 传说中的万物皆可神经网络,作者提出PNN(physical neutral network),在机械、光学、电子方面效果贼好。万物皆可神经网络,牛逼格拉斯。
IF:50.500Q1 Nature, 2022-01. DOI: 10.1038/s41586-021-04223-6 PMID: 35082422
Abstract:
Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability. Deep-learning accelerators aim to perform deep learning energy-efficiently, usually targeting the … >>>
Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability. Deep-learning accelerators aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics. Approaches so far have been unable to apply the backpropagation algorithm to train unconventional novel hardware in situ. The advantages of backpropagation have made it the de facto training method for large-scale neural networks, so this deficiency constitutes a major impediment. Here we introduce a hybrid in situ-in silico algorithm, called physics-aware training, that applies backpropagation to train controllable physical systems. Just as deep learning realizes computations with deep neural networks made from layers of mathematical functions, our approach allows us to train deep physical neural networks made from layers of controllable physical systems, even when the physical layers lack any mathematical isomorphism to conventional artificial neural network layers. To demonstrate the universality of our approach, we train diverse physical neural networks based on optics, mechanics and electronics to experimentally perform audio and image classification tasks. Physics-aware training combines the scalability of backpropagation with the automatic mitigation of imperfections and noise achievable with in situ algorithms. Physical neural networks have the potential to perform machine learning faster and more energy-efficiently than conventional electronic processors and, more broadly, can endow physical systems with automatically designed physical functionalities, for example, for robotics, materials and smart sensors. <<<
翻译
1093.
尹志 (2022-02-08 23:23):
#paper doi: 10.7554/eLife.58906 Anna A Ivanova, et al. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 2020;9:e58906(2020). 这是我在看一本编程小册子的时候作者引的一篇神经科学的研究工作。文章探讨了编程作为一项认知活动,到底是什么认知与神经机制在支撑它?研究者用fMRI技术对两类大脑系统进行了考察:1. multiple demand (MD) system;2. language system。 前者在数学、逻辑、解决问题中被常使用;后者在语言处理中被常使用。作者使用python和ScratchJr两种编程方式(基于文本的和基于图形界面的)进行编码和进行句子的内容匹配。他们发现MD系统在两种编程方式中,对编码活动都有强烈的反应;语言系统则只对句子的内容匹配有强烈的反应,对编码活动的反应很弱。当然这就一定程度上说明了编程活动是一项类似问题解决或者数学解题这样的认知活动。虽然编码很多时候是文字的形式,我们也习惯说编程语言,但处理它的大脑认知机制从实验上来看,似乎并不对应于常规的语言处理。
IF:6.400Q1 eLife, 2020-12-15. DOI: 10.7554/eLife.58906 PMID: 33319744
Abstract:
Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two … >>>
Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two candidate brain systems: the multiple demand (MD) system, typically recruited during math, logic, problem solving, and executive tasks, and the language system, typically recruited during linguistic processing. We examined MD and language system responses to code written in Python, a text-based programming language (Experiment 1) and in ScratchJr, a graphical programming language (Experiment 2); for both, we contrasted responses to code problems with responses to content-matched sentence problems. We found that the MD system exhibited strong bilateral responses to code in both experiments, whereas the language system responded strongly to sentence problems, but weakly or not at all to code problems. Thus, the MD system supports the use of novel cognitive tools even when the input is structurally similar to natural language. <<<
翻译
1094.
Ricardo (2022-01-31 21:02):
#paper doi:https://doi.org/10.1523/JNEUROSCI.3479-08.2008 A Structural MRI Study of Human Brain Development from Birth to 2 Years. 读一篇08年发表在The Journal of Neuroscience上的一篇关于婴幼儿脑结构发育的文章。之前介绍过几篇婴幼儿大脑发育相关的文章,也提到了在出生后的两年时间里,婴幼儿大脑处于快速的动态发育过程,并且这一时期的发育在一些神经发育疾病中(自闭症或精神分裂症)有着重要的影响。这个工作采集了包括98名健康被试从出生到2岁时期的脑结构磁共振影像,并使用北卡罗来纳大学开发的自动分割方法划分脑组织,并测定了侧脑室、尾状核和海马的体积。 分析结果表明: 1. 出生后的第一年全脑容量增加了101%;第二年增加了15%。灰质体积的增长占据了全脑体积增长量的主要部分,在第一年增长了149%,而白质体积仅增加了11%; 2. 小脑容量在第一年增加了240%,侧脑室体积在第一年则增加了280%,在第二年略有下降; 3. 从1岁到2碎,尾状核增长了19%,海马增长了13%。 人类大脑在出生后的两年快速发育,这主要是受到灰质生长的驱动(也就是大脑皮层的增长非常快速)。相比之下,白质的增长要慢得多。
Abstract:
Brain development in the first 2 years after birth is extremely dynamic and likely plays an important role in neurodevelopmental disorders, including autism and schizophrenia. Knowledge regarding this period is … >>>
Brain development in the first 2 years after birth is extremely dynamic and likely plays an important role in neurodevelopmental disorders, including autism and schizophrenia. Knowledge regarding this period is currently quite limited. We studied structural brain development in healthy subjects from birth to 2. Ninety-eight children received structural MRI scans on a Siemens head-only 3T scanner with magnetization prepared rapid gradient echo T1-weighted, and turbo spin echo, dual-echo (proton density and T2 weighted) sequences: 84 children at 2-4 weeks, 35 at 1 year and 26 at 2 years of age. Tissue segmentation was accomplished using a novel automated approach. Lateral ventricle, caudate, and hippocampal volumes were also determined. Total brain volume increased 101% in the first year, with a 15% increase in the second. The majority of hemispheric growth was accounted for by gray matter, which increased 149% in the first year; hemispheric white matter volume increased by only 11%. Cerebellum volume increased 240% in the first year. Lateral ventricle volume increased 280% in the first year, with a small decrease in the second. The caudate increased 19% and the hippocampus 13% from age 1 to age 2. There was robust growth of the human brain in the first two years of life, driven mainly by gray matter growth. In contrast, white matter growth was much slower. Cerebellum volume also increased substantially in the first year of life. These results suggest the structural underpinnings of cognitive and motor development in early childhood, as well as the potential pathogenesis of neurodevelopmental disorders. <<<
翻译
1095.
尹志 (2022-01-31 12:53):
#paper doi:10.1038/nature14539 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). 这是深度学习三巨头于2015年写的一篇nature综述。也是nature纪念AI60周年的一系列综述paper里的一篇。这篇paper综述了深度学习这一热门主题。当然,作为深度学习的几位奠基人,确实把深度学习的概念原理应用写的深入浅出。本文从监督学习一直介绍到反向传播,主要综述了CNN和RNN的原理及其应用,很适合初学者全面了解(当时)的深度学习的概貌。在最后一段深度学习的未来一节,作者对无监督学习的未来报以热烈的期望,看看这几年,特别是yann lecun大力推动的自监督成为显学,也算是念念不忘必有回响了。
IF:50.500Q1 Nature, 2015-May-28. DOI: 10.1038/nature14539 PMID: 26017442
Abstract:
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in … >>>
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. <<<
翻译
1096.
Dante ଲ ଲ ଲ (2022-01-26 17:59):
#paper doi:10.1088/1742-6596/664/9/092010 The Effect of NUMA Tunings on CPU Performance 水文一篇,就是介绍一下什么是 NUMA( Non-Uniform Memory Access 就是给 CPU 不同的 core 区分不同的 memory 当 core 访问靠近的 memory 时速度会更快,这是为了解决 multiple core 架构下 cpu 挤在一条 bus 上访问 memory 导致性能瓶颈的一个方案),然后在自己不同架构的机器上跑跑测试集,再比较一下,说明不同的 NUMA memory 的性能差异,这样就是一篇文章了。除了「NUMA memory policy 要考虑不同 workload 」,没太多有价值的东西(甚至它的测试集跟我想要的场景都不相干)。
1097.
小擎子 (2022-01-26 17:07):
#paper doi:10.1016/j.cell.2019.07.008 Cell, 2019, Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes。研究肿瘤微生物的一篇经典论文。测试了胰腺癌的肿瘤微生物,收集了两组来源数据,每组数据都包含长期存活患者(LTS,中位生存期10.1年)和短期存活患者(STS,中位生存期1.6年)。测试了组织微生物和肠道微生物,文献中也收集了正常人的胰腺组织微生物和肠道微生物。发现LTS和STS的微生物组成模式不同,同时富集在LTS和STS里的微生物种类不同。又额外使用FMT的方法,在小鼠身上做了实验,实验设计较为严谨,小鼠移植肿瘤前使用抗生素及FMT处理。小鼠实验发现,来源于LTS的FMT的小鼠的肿瘤大小明显缩小,STS的FMT的肿瘤最大,正常人的FMT居中。为了验证是微生物的影响,在移植FMT后也做了抗生素处理做对照。实验发现,FMT(粪便微生物群移植)可以改变小鼠的肠道微生物,同时小鼠肿瘤里的微生物也会随之变化。LTS的微生物组成情况与正常人不同,来自LTS的微生物移植对小鼠的肿瘤有消融效果。
IF:45.500Q1 Cell, 2019-08-08. DOI: 10.1016/j.cell.2019.07.008 PMID: 31398337
Abstract:
Most patients diagnosed with resected pancreatic adenocarcinoma (PDAC) survive less than 5 years, but a minor subset survives longer. Here, we dissect the role of the tumor microbiota and the … >>>
Most patients diagnosed with resected pancreatic adenocarcinoma (PDAC) survive less than 5 years, but a minor subset survives longer. Here, we dissect the role of the tumor microbiota and the immune system in influencing long-term survival. Using 16S rRNA gene sequencing, we analyzed the tumor microbiome composition in PDAC patients with short-term survival (STS) and long-term survival (LTS). We found higher alpha-diversity in the tumor microbiome of LTS patients and identified an intra-tumoral microbiome signature (Pseudoxanthomonas-Streptomyces-Saccharopolyspora-Bacillus clausii) highly predictive of long-term survivorship in both discovery and validation cohorts. Through human-into-mice fecal microbiota transplantation (FMT) experiments from STS, LTS, or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. Our study demonstrates that PDAC microbiome composition, which cross-talks to the gut microbiome, influences the host immune response and natural history of the disease. <<<
翻译
1098.
na na na (2022-01-23 22:40):
#paper doi: 10.1038/s41573-021-00155-y. Nat Rev Drug Discov,2021 Mar 8. Beyond immune checkpoint blockade: emerging immunological strategies.  1. 推荐理由:肿瘤的免疫治疗近年来一直是肿瘤领域热门的研究课题;本篇综述整理总结了多项免疫治疗前沿研究成果,在免疫治疗机制探索,免疫治疗药物临床疗效等多个方面都有总结讨论,并提出了两个治疗创新应关注的关键因素;感兴趣的朋友不妨一读,科普当前肿瘤免疫治疗效果及研究进展,而关注该领域的朋友更可以从综述所提出的方向来结合自身研究课题进行梳理和深入挖掘; 2. 解读:当前免疫治疗的主力军还是免疫检查点抑制剂,其原理主要是通过“阻止”免疫抑制,持续激活免疫反应来达到“治疗”肿瘤的效果;而提高免疫治疗疗效应考虑到更为复杂的免疫细胞-癌细胞相互作用。作者提出以下两个改善方向:①改善T细胞归巢和功能障碍:②关注单核吞噬细胞功能用以TME炎症重塑;以上两个方向基于复杂的生物学机制又有多个影响因素,例如在T细胞归巢方向,有肿瘤微血管系统,趋化因子和细胞因子等;单核吞噬细胞方向,有CD47,血管生成,胞外基质等。 3. 评论:未来的免疫疗法需要更多的关注个性化或定制策略,这些策略不仅要考虑保护性免疫应答的机制,而且还考虑其他免疫细胞类型在TME复杂细胞网络中的作用;识别出肿瘤特异性的弱点,通过对应的调节药物影响,然后将这些新药物与检查点抑制剂结合,才有可能突破当前的困境。
Abstract:
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of … >>>
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types. <<<
翻译
1099.
Donny (2022-01-22 21:24):
#paper doi:10.1016/j.ccell.2021.04.014 Conserved pan-cancer microenvironment subtypes predict response to immunotherapy 这是一篇MD Anderson和Boston Gene去年做的泛癌免疫分型的论文,作者先定义了20多个涉及肿瘤免疫相关特征的基因集,然后使用UCSC Xena的TCGA多种瘤种样本的TOIL RSEM标准化后的基因表达数据,使用ssGSEA算法计算特征基因集的富集打分,并针对瘤种内样本进行MAD标准化,并使用Louvain聚类进而将所有样本分为四大免疫亚型,分别是:免疫富集型、免疫富集纤维化型、纤维化型和免疫沙漠型。这四种分型依次表现为免疫浸润减少,免疫原性降低。这四个分型同时和之前所做的TCIA数据库的6种亚型分型基本一致,也从通路活性、关键肿瘤免疫指标、生存分析、HE免疫细胞数量、临床免疫治疗队列疗效等进行了多方面的佐证。
IF:48.800Q1 Cancer cell, 2021-06-14. DOI: 10.1016/j.ccell.2021.04.014 PMID: 34019806
Abstract:
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the … >>>
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classification by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immunotherapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types due to the inclusion of malignant and microenvironment components. A visual tool integrating transcriptomic and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, immune composition, anti-tumor immunity, and immunosuppressive escape mechanisms. Integrative analyses plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens. <<<
翻译
1100.
Ricardo (2022-01-22 17:06):
#paper doi:10.1109/TMI.2021.3137280 Recurrent Tissue-Aware Network for Deformable Registration of Infant Brain MR Images. 介绍一篇21年末发表在TMI上的文章。众所周知,非线性配准技术是一种用于纵向发育分析和群体分析的基础技术。然而由于出生后的两年时间里,婴幼儿大脑处于快速发育过程中,对同一个被试的不同发育时间点的婴儿脑图像或者对不同被试的婴幼儿脑图像进行精细的配准是一件非常困难的事。主要有几点原因:1.婴幼儿大脑处于持续的髓鞘化进程,脑图像体素强度呈现出区域间的不一致性;2.0~2岁这个阶段婴幼儿大脑图像的信号强度会出现反转的变化,这使得纵向图像的配准变得更加困难;3.婴幼儿大脑非常小,而大脑组织结构又相对比较复杂,并且还存在许多图像噪声及伪影。所以这篇文章干脆不对MRI强度信号图像进行配准,而是使用基于T1/T2图像的脑组织分割图进行配准,这样就规避了出生后的头两年大脑组织信号强度的快速变化的问题。这篇文章主要有两个创新点:1.只对模型做一次训练,但是在测试阶段进行多次配准,一步步对脑图像的形变场进行finetune;2.作者将速度场建模成一个多元高斯场,每个体素都服从高斯分布。并给予速度场的方差建模形变场的不确定度(uncertainty),并基于这样的uncertainty对形变场进行动态平滑(adaptive smoothing),而非以往的全局平滑。具体结果当然要比其他方法更好啦,这个没啥说的。不过这个方法的局限在于需要精细分割后的脑组织图像,而对婴幼儿的脑图像进行组织分割又是一个非常困难的事啊(就是又缺数据又难打label)。
Abstract:
Deformable registration is fundamental to longitudinal and population-based image analyses. However, it is challenging to precisely align longitudinal infant brain MR images of the same subject, as well as cross-sectional … >>>
Deformable registration is fundamental to longitudinal and population-based image analyses. However, it is challenging to precisely align longitudinal infant brain MR images of the same subject, as well as cross-sectional infant brain MR images of different subjects, due to fast brain development during infancy. In this paper, we propose a recurrently usable deep neural network for the registration of infant brain MR images. There are three main highlights of our proposed method. (i) We use brain tissue segmentation maps for registration, instead of intensity images, to tackle the issue of rapid contrast changes of brain tissues during the first year of life. (ii) A single registration network is trained in a one-shot manner, and then recurrently applied in inference for multiple times, such that the complex deformation field can be recovered incrementally. (iii) We also propose both the adaptive smoothing layer and the tissue-aware anti-folding constraint into the registration network to ensure the physiological plausibility of estimated deformations without degrading the registration accuracy. Experimental results, in comparison to the state-of-the-art registration methods, indicate that our proposed method achieves the highest registration accuracy while still preserving the smoothness of the deformation field. The implementation of our proposed registration network is available online https://github.com/Barnonewdm/ACTA-Reg-Net. <<<
翻译
回到顶部