来自用户 白鸟 的文献。
当前共找到 27 篇文献分享,本页显示第 21 - 27 篇。
21.
白鸟
(2023-04-29 23:16):
#paper Single-cell transcriptomics dissects hematopoietic cell destruction and T-cell engagement in aplastic anemia. Blood. 2021.
研究背景:再生障碍性贫血 (AA) 是一种T细胞介导的造血系统自身免疫性疾病,表现为造血干细胞和祖细胞 (HSPC) 的严重耗竭。异常活化的T淋巴细胞攻击自身造血干/祖细胞(HSPC)是再生障碍性贫血(AA)发病重要的机制。
研究难点:受限于技术和 HSPC 在骨髓衰竭背景下的稀疏性。AA患者骨髓残留HSPC细胞数量极少,精细剖析骨髓损伤后HSPC各组分的病理变化及T淋巴细胞免疫打击HSPC的分子机制比较困难。
样本类型:健康供体(healthy donors,n = 8)+ 非重度再生障碍性贫血患者 (non-SAA, n = 19) + 重度再生障碍性贫血患者 (SAA, n = 4 );另加 药物处理组:免疫抑制治疗(IST)后患者
样本取样:骨髓及外周血中分选出CD34+造血干/祖细胞和CD4+/CD8+ T淋巴细胞
实验技术:STRT-Seq(高测序深度) + Smart-seq2
研究思路:不同疾病/健康组 -> 流式分选细胞 - > CD34+造血干/祖细胞和CD4+/CD8+ T淋巴细胞->单细胞测序(STRT-Seq + Smart-seq2)->定义了9类HSPC细胞亚群->基因表达和转录调控网络分析
研究结果:
① STRT-seq克服骨髓残留造血干细胞和祖细胞HSPC数量不足的限制,对AA患者的HSPC和T细胞进行分析,分别获得了2,385个HSPC和4,081个CD4+/CD8+ T细胞的单细胞转录组,定义了9类HSPCs细胞亚群,首次绘制了AA血液病理图谱,揭示了AA发病,特别是恶性转化的新机制。
② AA中残留的HSPC在基因表达和转录调控网络中表现出谱系特异性的改变,提示存在谱系选择性造血损伤。
③ 综合分析HSPC和T细胞的基因表达,确定了细胞类型特异性配体-受体相互作用是AA中免疫攻击的关键分子介质。
④ 通过追踪免疫抑制治疗(IST)后的患者,发现HSPCs和T淋巴细胞的基因表达没有完全恢复到正常水平,甚至接近治疗前的状态,这可能是AA患者需要长期维持免疫抑制治疗的主要原因之一。
Abstract:
Aplastic anemia (AA) is a T cell-mediated autoimmune disorder of the hematopoietic system manifested by severe depletion of the hematopoietic stem and progenitor cells (HSPCs). Nonetheless, our understanding of the …
>>>
Aplastic anemia (AA) is a T cell-mediated autoimmune disorder of the hematopoietic system manifested by severe depletion of the hematopoietic stem and progenitor cells (HSPCs). Nonetheless, our understanding of the complex relationship between HSPCs and T cells is still obscure, mainly limited by techniques and the sparsity of HSPCs in the context of bone marrow failure. Here we performed single-cell transcriptome analysis of residual HSPCs and T cells to identify the molecular players from patients with AA. We observed that residual HSPCs in AA exhibited lineage-specific alterations in gene expression and transcriptional regulatory networks, indicating a selective disruption of distinct lineage-committed progenitor pools. In particular, HSPCs displayed frequently altered alternative splicing events and skewed patterns of polyadenylation in transcripts related to DNA damage and repair, suggesting a likely role in AA progression to myelodysplastic syndromes. We further identified cell type-specific ligand-receptor interactions as potential mediators for ongoing HSPCs destruction by T cells. By tracking patients after immunosuppressive therapy (IST), we showed that hematopoiesis remission was incomplete accompanied by IST insensitive interactions between HSPCs and T cells as well as sustained abnormal transcription state. These data collectively constitute the transcriptomic landscape of disrupted hematopoiesis in AA at single-cell resolution, providing new insights into the molecular interactions of engaged T cells with residual HSPCs and render novel therapeutic opportunities for AA.
<<<
翻译
22.
白鸟
(2023-03-30 17:22):
#paper https://www.cell.com/cell/fulltext/S0092-8674(21)01381-7. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. 此文是人类肿瘤图谱网络(HTAN)联盟两年多时间在CRC肿瘤领域发的2篇cell文章之一,另一篇文章是构建肿瘤空间3D图谱。该联盟的愿景是构建肿瘤的发生、局部扩张、转移和治疗性耐药的动态3D图谱。该文章的切入点很重要,通过已有文献猜想两条CRC癌变的不同机制,提出了一个整合了单细胞转录组学、基因组学和免疫组织病理学的多组学人类癌前图谱。从功能上验证了建立不同的肿瘤景观的不同起源和分子机制过程。也是该联盟的策略从病变起源来研究,才能对晚期和高度异质性的癌症有更清晰的认识,从而为精准预防、监测和治疗的新策略铺平道路。对于多组学文章,切入点(科学猜想)和策略很重要。
Abstract:
Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell …
>>>
Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.
<<<
翻译
23.
白鸟
(2023-02-28 21:23):
#paper doi:https://doi.org/10.1038/s41587-021-00895-7, 2021, Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects.
单细胞多模态检测技术:通过各种实验技术进行多模态检测,即在同一个细胞中同时探测不同的分子特征,在高分辨率下,成千上万的细胞拥有越来越多的分子维度,包括基因组、转录组和表观遗传修饰。虽然没有一个单一的“全能”技术可以完全捕捉到复杂的分子机制,但这些数据有可能提供一个基本的生物过程,有机会从描述性的 "快照 "向对基因调控的机械性理解推进。
意义:单细胞多模态检测技术的发展为研究细胞异质性的多个维度提供了强有力的工具,使我们对发育、组织稳态和疾病有了新的认识。通过结合关于分子层之间层次关系的先验知识(即生物学的中心法则),多模式分析将在识别基因调控网络中事件的因果链方面发挥重要作用。
挑战:设计适当的策略,将不同模式的数据联系起来。术语 "数据整合 "(data integration)被用来描述这项工作,这个定义很广泛,从单个组学数据集的批量校正到染色质可及性和遗传变异与转录的关联。
三种类型的数据整合策略:基因组特征作为锚点(水平整合);细胞为锚(垂直整合);高维空间没有锚点(对角线整合);
展望:回顾了数据整合策略的既定原则、局限性,尽管现有的整合策略利用了类似的数学思想,但它们通常有不同的目标,并依赖于不同的原则和假设。因此,需要新的定义和概念,以使单细胞数据整合技术具有本身的背景性,并能开发新的方法。
Abstract:
The development of single-cell multimodal assays provides a powerful tool for investigating multiple dimensions of cellular heterogeneity, enabling new insights into development, tissue homeostasis and disease. A key challenge in …
>>>
The development of single-cell multimodal assays provides a powerful tool for investigating multiple dimensions of cellular heterogeneity, enabling new insights into development, tissue homeostasis and disease. A key challenge in the analysis of single-cell multimodal data is to devise appropriate strategies for tying together data across different modalities. The term 'data integration' has been used to describe this task, encompassing a broad collection of approaches ranging from batch correction of individual omics datasets to association of chromatin accessibility and genetic variation with transcription. Although existing integration strategies exploit similar mathematical ideas, they typically have distinct goals and rely on different principles and assumptions. Consequently, new definitions and concepts are needed to contextualize existing methods and to enable development of new methods.
<<<
翻译
24.
白鸟
(2023-01-28 22:01):
#paper https://doi.org/10.1038/s41591-022-02104-7 nature medicine 2022. Impact of the Human Cell Atlas on medicine.
疾病只有在健康样本的参照下才能被充分理解,实现这一愿景需要构建人类所有细胞的综合参考图谱。单细胞图谱有望填补基因、疾病和疗法之间“缺失的一环”。
图谱的意义在于:1.提高我们对疾病的认知,通过识别特定的细胞类型、状态、程序和与疾病相关基因起作用的环境,我们可以从细胞和组织层面了解疾病机制。2.诊断和治疗的应用:单细胞图谱和空间图谱改变我们对不同疾病在细胞和组织层面的理解,为了解诊断学、药物发现和新的治疗途径的发展提供信息。利用这些发现来开发强大的疾病诊断;确定有前途的新药物靶标;预测它们的功效、毒性和耐药机制;从癌症疗法到再生医学方领域授予新的疗法。
总结:人类细胞图谱的使命是形成一个参考图谱,作为了解人类健康以及诊断、监测和治疗疾病的基础。类似于人类基因组计划,基因组计划本身并没有“解决”疾病,但为生物医学的许多领域奠定了重要基础。绘制人类细胞图谱同时也带来了巨大的后期工作和技术挑战,路漫漫兮,但是它对医学的潜力也是巨大的。
Abstract:
Single-cell atlases promise to provide a 'missing link' between genes, diseases and therapies. By identifying the specific cell types, states, programs and contexts where disease-implicated genes act, we will understand …
>>>
Single-cell atlases promise to provide a 'missing link' between genes, diseases and therapies. By identifying the specific cell types, states, programs and contexts where disease-implicated genes act, we will understand the mechanisms of disease at the cellular and tissue levels and can use this understanding to develop powerful disease diagnostics; identify promising new drug targets; predict their efficacy, toxicity and resistance mechanisms; and empower new kinds of therapies, from cancer therapies to regenerative medicine. Here, we lay out a vision for the potential of cell atlases to impact the future of medicine, and describe how advances over the past decade have begun to realize this potential in common complex diseases, infectious diseases (including COVID-19), rare diseases and cancer.
<<<
翻译
25.
白鸟
(2022-12-31 23:22):
#paper https://doi.org/10.1016/j.csbj.2020.06.012 Computational and Structural Biotechnology Journal 2020. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation.
关注点:这是一篇关于单细胞ATAC-seq分析的综述文章,比较系统地从数据的预处理到生成科学假设的过程进行了详细方法论的说明和基准测试,使用适当的软件工具和数据库,提供有价值的分析方法指导。
研究背景:与人类复杂性状相关的大多数遗传变异位于基因组非编码区域。因此,了解基因型到表型之间的生物学机理机制的研究,大多涉及基因表达的表观遗传调控。开放染色质区域的全基因组图谱可以通过顺式和反式调控元件与性状相关序列变异的关联分析,促进顺式和跨式调控元件的功能分析。ATAC-seq测序 技术,转座酶可及染色质分析被认为是染色质可及性全基因组分析中最容易获得且最具成本效益的策略。
研究不足:目前,还开发了单细胞 ATAC-seq (scATAC-seq) 技术,来研究不同异质细胞群的组织样本中细胞类型特异性染色质的可及性差异。但是,由于 scATAC-seq 数据的固有特性,高噪声和稀疏性,很难准确提取生物信号并设计有效的生物学假设。为了克服 scATAC-seq 数据分析中的这些限制,过去几年研究者开发了一些新的方法和软件工具。然而,scATAC-seq 数据分析的最佳和标准分析流程并未达成共识。
内容大纲:1.阐述scATAC-seq 分析工作流程:数据的预处理,测序read的预处理->过滤掉低质量细胞或双细胞->生成细胞-特征矩阵->多样本的批次校正和数据整合->数据转换,包括归一化->降维、可视化和聚类。以上跟scrna-seq的步骤很相似,又有其特殊性。2.scATAC-seq生成科学假设的下游分析:包括细胞类型注释,染色质可及性动力学研究,基于TF motif,基于基因,增强子,基因-疾病相关遗传变异的研究促进假说的生成。以阐明顺式调控元件(例如启动子和增强子)与反式调控元件(例如转录因子 (TF))之间的网络。还可以使用 scATAC-seq 数据分析基因活性和遗传变异的可及性。3.多模态分析:scATAC-seq 可以与单细胞 RNA 测序 (scRNA-seq) 数据 和其他组学数据相结合,用于多组学研究。这种综合多模态分析将有助于识别参与疾病进展的关键调节因子,这些调节因子通常是潜在的治疗靶点和诊断生物标志物。
IF:4.400Q2
Computational and structural biotechnology journal,
2020.
DOI: 10.1016/j.csbj.2020.06.012
PMID: 32637041
Abstract:
Most genetic variations associated with human complex traits are located in non-coding genomic regions. Therefore, understanding the genotype-to-phenotype axis requires a comprehensive catalog of functional non-coding genomic elements, most of …
>>>
Most genetic variations associated with human complex traits are located in non-coding genomic regions. Therefore, understanding the genotype-to-phenotype axis requires a comprehensive catalog of functional non-coding genomic elements, most of which are involved in epigenetic regulation of gene expression. Genome-wide maps of open chromatin regions can facilitate functional analysis of cis- and trans-regulatory elements via their connections with trait-associated sequence variants. Currently, Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is considered the most accessible and cost-effective strategy for genome-wide profiling of chromatin accessibility. Single-cell ATAC-seq (scATAC-seq) technology has also been developed to study cell type-specific chromatin accessibility in tissue samples containing a heterogeneous cellular population. However, due to the intrinsic nature of scATAC-seq data, which are highly noisy and sparse, accurate extraction of biological signals and devising effective biological hypothesis are difficult. To overcome such limitations in scATAC-seq data analysis, new methods and software tools have been developed over the past few years. Nevertheless, there is no consensus for the best practice of scATAC-seq data analysis yet. In this review, we discuss scATAC-seq technology and data analysis methods, ranging from preprocessing to downstream analysis, along with an up-to-date list of published studies that involved the application of this method. We expect this review will provide a guideline for successful data generation and analysis methods using appropriate software tools and databases for the study of chromatin accessibility at single-cell resolution.
<<<
翻译
26.
白鸟
(2022-11-30 11:26):
#paper https://doi.org/10.1016/j.cell.2022.05.013 Cell 2022. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. 遗传学的一个核心目标是研究遗传变化(基因型)和表型之间的关系。主要有两种研究思路,正向遗传学和反向遗传学。正向遗传以表型为中心的“正向遗传”,即揭示驱动表型的基因变化(果因论);而反向遗传是以基因为中心,对确定的遗传变化引起的不同表型进行解析(因果论)。为了揭示基因扰动的功能后果和基因型-表型关系,文章团队构建了一套可实践的方法论。本文利用单细胞高通量CRISPR 筛选技术Perturb-seq,针对对K562和RPE1细胞系超过250万个细胞进行了单个基因的CRISPR扰动(即1个细胞只包含一种基因的 sgRNA),通过单一基因型的变化,查看在转录组层面表型的变化,构建了一个基因型-表型综合图谱。研究团队根据基因的共同调控将其聚类到特定表达程序中,并计算每个扰动簇中每个基因表达程序的平均活性。分析结果包含多个与基因干扰相关的已知表达程序,包括蛋白酶体功能障碍导致的蛋白酶体亚基上调、 ESCRT蛋白缺失时NF-kB信号通路的激活,以及胆固醇生物合成上调对囊泡运输缺陷的反应等。它的意义在于单细胞CRISPR筛选为系统探索遗传和细胞功能提供了一个研究工具,构建和分析丰富的基因型-表现型图谱,以作为系统探索遗传和细胞功能的驱动力。可以构建全基因组的基因敲除细胞池,定向的研究,关键基因的敲除对下游转录调控表型的生物学功能。重点学习文章中grna的数据质控和归一化等细节处理。
Abstract:
A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional …
>>>
A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena—from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.
<<<
翻译
27.
白鸟
(2022-10-27 09:36):
#paper doi:#paper doi:https://doi.org/10.1038/s41587-022-01468-y Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes.
单细胞转录组体细胞拷贝数变异的单倍型感知分析
基因组不稳定性和转录程序的异常改变都在癌症中发挥重要作用。单细胞 RNA 测序 (scRNA-seq) 在一次检测中能够同时研究肿瘤异质性的遗传和非遗传来源。虽然有许多工具可以从外显子组和全基因组测序数据中识别CNV,针对单细胞RNA-seq数据中检测CNV的方法非常稀缺。常用的inferCNV和copyKAT都只是利用转录组的基因表达信息进行CNV推断。最近,哈佛医学院的研究者提出了一种计算方法,Numbat,它将基于群体的定相(population-based phasing)获得的单倍型信息与等位基因和表达信号相结合,能准确推断单个细胞中的等位基因特异性CNV并重建它们的谱系关系。也就是说它通过基因表达和等位基因两个证据链,进行联合推断,避免CNV推断误判。Numbat利用亚克隆之间的进化关系来迭代推断单细胞拷贝数分布和肿瘤克隆系统发育。比其他工具进行基准测试,对包括多发性骨髓瘤、胃癌、乳腺癌和甲状腺癌在内的 22 个肿瘤样本的分析表明,Numbat可以重建肿瘤拷贝数分布,并准确识别肿瘤微环境中的恶性细胞。Numbat 不需要样本匹配的 DNA 数据,也不需要先验基因分型,适用于广泛的实验环境和癌症类型。总之,Numbat 可以扩展单细胞RNA-seq数据来探测细胞的CNV景观以及转录组景观。需要思考的是我们可能需要更多不同遗传背景的人群定相单倍型信息来辅助推断。另外,肿瘤基线倍性估计仍是拷贝数分析中的有挑战性的问题。
Abstract:
Genome instability and aberrant alterations of transcriptional programs both play important roles in cancer. Single-cell RNA sequencing (scRNA-seq) has the potential to investigate both genetic and nongenetic sources of tumor …
>>>
Genome instability and aberrant alterations of transcriptional programs both play important roles in cancer. Single-cell RNA sequencing (scRNA-seq) has the potential to investigate both genetic and nongenetic sources of tumor heterogeneity in a single assay. Here we present a computational method, Numbat, that integrates haplotype information obtained from population-based phasing with allele and expression signals to enhance detection of copy number variations from scRNA-seq. Numbat exploits the evolutionary relationships between subclones to iteratively infer single-cell copy number profiles and tumor clonal phylogeny. Analysis of 22 tumor samples, including multiple myeloma, gastric, breast and thyroid cancers, shows that Numbat can reconstruct the tumor copy number profile and precisely identify malignant cells in the tumor microenvironment. We identify genetic subpopulations with transcriptional signatures relevant to tumor progression and therapy resistance. Numbat requires neither sample-matched DNA data nor a priori genotyping, and is applicable to a wide range of experimental settings and cancer types.
<<<
翻译