来自用户 惊鸿 的文献。
当前共找到 26 篇文献分享,本页显示第 21 - 26 篇。
21.
惊鸿
(2023-01-07 21:44):
#paper DOI : 10.1038/s43587-022-00340-7 Pub Date:2022-12-30Optogenetic rejuvenation of mitochondrial membrane potential extends C. elegans lifespan 线粒体功能障碍在衰老中起着核心作用,但确切的生物学原因仍在确定中。在这里,我们展示了使用光激活质子泵在成年期通过光遗传学增加线粒体膜电位可改善与年龄相关的表型并延长秀丽隐杆线虫的寿命。我们的研究结果提供了直接的因果证据,表明挽救与年龄相关的线粒体膜电位下降足以减缓衰老速度并延长健康寿命和寿命。
Abstract:
Mitochondrial dysfunction plays a central role in aging but the exact biological causes are still being determined. Here, we show that optogenetically increasing mitochondrial membrane potential during adulthood using a …
>>>
Mitochondrial dysfunction plays a central role in aging but the exact biological causes are still being determined. Here, we show that optogenetically increasing mitochondrial membrane potential during adulthood using a light-activated proton pump improves age-associated phenotypes and extends lifespan in . Our findings provide direct causal evidence that rescuing the age-related decline in mitochondrial membrane potential is sufficient to slow the rate of aging and extend healthspan and lifespan.
<<<
翻译
22.
惊鸿
(2022-12-29 15:54):
#paper DOI : 10.1126/science.abl6620 Glassfrogs conceal blood in their liver to maintain transparency 20221222 动物的透明体是一种复杂的伪装形式,涉及减少整个生物体的光散射和吸收的机制。在脊椎动物中,获得透明度很困难,因为它们的循环系统充满了强烈减弱光线的红细胞 (RBC)。在此,这个实验团队记录了玻璃蛙如何通过隐藏这些细胞。该实验团队使用光声成像在体内追踪红细胞,表明静息玻璃蛙通过从循环中去除约 89% 的红细胞并将其包装在肝脏中,从而将透明度提高两到三倍。因此,脊椎动物的透明性需要透明组织和从这些组织中“清除”呼吸色素的活跃机制。此外,玻璃蛙能够调节位置、密度。
Abstract:
Transparency in animals is a complex form of camouflage involving mechanisms that reduce light scattering and absorption throughout the organism. In vertebrates, attaining transparency is difficult because their circulatory system …
>>>
Transparency in animals is a complex form of camouflage involving mechanisms that reduce light scattering and absorption throughout the organism. In vertebrates, attaining transparency is difficult because their circulatory system is full of red blood cells (RBCs) that strongly attenuate light. Here, we document how glassfrogs overcome this challenge by concealing these cells from view. Using photoacoustic imaging to track RBCs in vivo, we show that resting glassfrogs increase transparency two- to threefold by removing ~89% of their RBCs from circulation and packing them within their liver. Vertebrate transparency thus requires both see-through tissues and active mechanisms that "clear" respiratory pigments from these tissues. Furthermore, glassfrogs' ability to regulate the location, density, and packing of RBCs without clotting offers insight in metabolic, hemodynamic, and blood-clot research.
<<<
翻译
23.
惊鸿
(2022-11-28 10:33):
#paper CRISPRing future medicinesExpert Opin. Drug Discov.PubDate:2021-01-03DOI:10.1080/17460441.2021.1850687Laure Grand Moursel 1 , Mijke Visser 1 , Geraldine Servant 1 , Selvi Durmus 1 , Anne-Marie Zuurmond 1这是以快速且具有成本效益的方式设计哺乳动物基因组的能力导致 CRISPR 技术在生物医学研究中的快速适应。基于 CRISPR 的工程具有加速药物发现、支持降低药物开发中的高损耗率以及促进细胞和基因疗法的开发的潜力。CRISPR 技术正迅速成为基因组工程的首选工具,如今很难想象没有这项技术的药物发现管道。随着未来几年,CRISPR 技术无疑将得到进一步完善,并将蓬勃发展成为一项成熟的技术,它将在支持药物发现管道以及细胞和基因治疗开发中的基因组工程要求方面发挥关键作用。
IF:6.000Q1
Expert opinion on drug discovery,
2021-04.
DOI: 10.1080/17460441.2021.1850687
PMID: 33322954
Abstract:
: The ability to engineer mammalian genomes in a quick and cost-effective way has led to rapid adaptation of CRISPR technology in biomedical research. CRISPR-based engineering has the potential to …
>>>
: The ability to engineer mammalian genomes in a quick and cost-effective way has led to rapid adaptation of CRISPR technology in biomedical research. CRISPR-based engineering has the potential to accelerate drug discovery, to support the reduction of high attrition rate in drug development and to enhance development of cell and gene-based therapies.: How CRISPR technology is transforming drug discovery is discussed in this review. From target identification to target validation in both and models, CRISPR technology is positively impacting the early stages of drug development by providing a straightforward way to genome engineering. This property also attracted attention for CRISPR application in the cell and gene therapy area.: CRISPR technology is rapidly becoming the preferred tool for genome engineering and nowadays it is hard to imagine the drug discovery pipeline without this technology. With the years to come, CRISPR technology will undoubtedly be further refined and will flourish into a mature technology that will play a key role in supporting genome engineering requirements in the drug discovery pipeline as well as in cell and gene therapy development.
<<<
翻译
24.
惊鸿
(2022-10-31 10:45):
#paper Clipping cancer with CRISPR Cancer Cytopathology ( IF 4.264 ) Pub Date : 2018-01-01 , DOI: 10.1002/cncy.21964 它是一种细菌自我保护,不然细菌就会在几分钟内死亡。许多细菌(和古生菌)可以扭转其病毒攻击的机制的侦查已迅速成为生物医学中最热门的研究领域之一。细菌 CRISPR(成簇的规则间隔短回文重复序列)-Cas9(CRISPR 相关蛋白 9)酶系统被重新用作精确的 DNA 编辑工具,已在广泛的应用中显示出早期前景,包括努力发现癌症通路和设计更有针对性的化疗药物。然而,科学家们敦促谨慎对待意外基因或产生脱靶效应的风险,以及永久改变遗传 DNA 的可能性;这让人想起 1990 年代后期围绕基因治疗的安全和伦理问题。在 CRISPR 系统的希望和严格审查中,最近的几项研究表明,新工具如何避免过去的一些陷阱,以及它如何在准备用于临床之前克服更多陷阱。该技术需要面临许多挑战,并且要避免对该项技术的过多幻想,否则将会给我们带来失望。
25.
惊鸿
(2022-09-27 09:09):
#paper doi:Volume 40, Issue 9, 12 September 2022, Pages 999-1009.e6Detection and localization of early- and late-stage cancers using platelet 这篇论文解释了RNA癌症患者受益于早期肿瘤检测,因为治疗结果对不太晚期的癌症更有利。血小板参与癌症进展,被认为是癌症检测的有前途的生物来源,因为它们根据局部和全身线索改变其RNA含量。我们表明,基于肿瘤的血小板(TEP)RNA血液测试能够检测18种癌症类型。血栓形成Seq在无症状对照组的特异性为99%,在I-IV期癌症患者的1,096份血液样本中有三分之二和352名I-III期肿瘤中的一半中正确检测到癌症的存在。对症对照组,包括炎症和心血管疾病以及良性肿瘤,假阳性检测结果增加,平均特异性为78%。此外,血栓形成Seq在超过80%的癌症患者中正确确定了五种不同肿瘤类型的肿瘤起源部位。这些结果突出了TEP衍生的RNA组合的潜在特性,以补充当前基于血液的癌症筛查方法。
Abstract:
Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for …
>>>
Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I-IV cancer patients and in half of 352 stage I-III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening.
<<<
翻译
26.
惊鸿
(2022-08-14 18:12):
#paper doi:10.1101/2022.08.08.503198 Bilallelic germline mutations in MAD1L1 induce a novel syndrome of aneuploidy with high tumor susceptibility
MAD1L1是编码纺锤体组装检查点 (SAC) 蛋白MAD1的基因,发生在一名36岁的患有十几个肿瘤的女性身上,包括五个恶性肿瘤。外周血细胞的功能研究表明缺乏全长蛋白质和SAC反应不足,导致细胞遗传学和单细胞 (sc) 检测到约30-40% 的非整倍体细胞DNA分析。对患者血细胞的scRNA-seq分析确定了线粒体应激伴随全身炎症,干扰素和NFkB信号增强。MAD1L1突变还导致 γ δ T细胞的特异性克隆扩增,增加了18号染色体并增强了细胞毒性,以及具有慢性淋巴细胞白血病细胞特征的染色体12增益和转录组特征的中间b细胞。这些数据表明MAD1L1突变是一种新的具有全身炎症和前所未有的肿瘤易感性的非整倍体综合征的原因。
仅仅一个基因片段就可以给全身带来变化,这些变化有好有坏,所以基因编辑不是消消乐,是一个严谨的技术,这是一个基因工程师应有的心态
bioRxiv,
2022.
DOI: 10.1101/2022.08.08.503198
Abstract:
Aneuploidy is a frequent feature of human tumors. Germline mutations leading to aneuploidy are very rare in humans, and their tumor-promoting properties are mostly unknown at the molecular level. We …
>>>
Aneuploidy is a frequent feature of human tumors. Germline mutations leading to aneuploidy are very rare in humans, and their tumor-promoting properties are mostly unknown at the molecular level. We report here novel germline biallelic mutations in MAD1L1, the gene encoding the Spindle Assembly Checkpoint (SAC) protein MAD1, in a 36-year-old female with a dozen of neoplasias, including five malignant tumors. Functional studies in peripheral blood cells demonstrated lack of full-length protein and deficient SAC response, resulting in ∼30-40% of aneuploid cells as detected by cytogenetic and single-cell (sc) DNA analysis. scRNA-seq analysis of patient blood cells identified mitochondrial stress accompanied by systemic inflammation with enhanced interferon and NFkB signaling. The inference of chromosomal aberrations from scRNA-seq analysis detected inflammatory signals both in aneuploid and euploid cells, suggesting a non-cell autonomous response to aneuploidy. In addition to random aneuploidies, MAD1L1 mutations resulted in specific clonal expansions of γδ T-cells with chromosome 18 gains and enhanced cytotoxic profile, as well as intermediate B-cells with chromosome 12 gains and transcriptomic signatures characteristic of chronic lymphocytic leukemia cells. These data point to MAD1L1 mutations as the cause of a new aneuploidy syndrome with systemic inflammation and unprecedented tumor susceptibility.
<<<
翻译