来自杂志 ACS synthetic biology 的文献。
当前共找到 2 篇文献分享。
1.
惊鸿 (2023-05-29 09:56):
#paper Date  : 2023-05-05 DOI : 10.1021/acssynbio.3c00216 Immortalized Bovine Satellite Cells for Cultured Meat Applications该论文提到,为了使培养肉在规模上成功,食用相关物种的肌肉细胞必须在体外快速可靠地扩展,从而每年生产数百万吨的生物量。基因不老化的细胞比原代细胞具有显着的优势,包括快速增长、逃避细胞衰老和始终一致的起始细胞群体生产。因此,研究人员通过持续表达牛端粒酶逆转录酶(TERT)和Cyclin-dependent kinase 4(CDK4)开发了基因不老化的牛卫星细胞(iBSCs)。这些细胞在发布时已经实现了超过120倍增殖,并保持了其肌肉分化能力。因此,它们为这一领域提供了有价值的工具,可以进一步推动培养肉的研究和开发。
IF:3.700Q1 ACS synthetic biology, 2023-05-19. DOI: 10.1021/acssynbio.3c00216 PMID: 37146268
Abstract:
For cultured meat to succeed at scale, muscle cells from food-relevant species must be expanded in vitro in a rapid and reliable manner to produce millions of metric tons of … >>>
For cultured meat to succeed at scale, muscle cells from food-relevant species must be expanded in vitro in a rapid and reliable manner to produce millions of metric tons of biomass annually. Toward this goal, genetically immortalized cells offer substantial benefits over primary cells, including rapid growth, escape from cellular senescence, and consistent starting cell populations for production. Here, we develop genetically immortalized bovine satellite cells (iBSCs) via constitutive expression of bovine Telomerase reverse transcriptase (TERT) and Cyclin-dependent kinase 4 (CDK4). These cells achieve over 120 doublings at the time of publication and maintain their capacity for myogenic differentiation. They therefore offer a valuable tool to the field, enabling further research and development to advance cultured meat. <<<
翻译
2.
颜林林 (2022-06-18 14:39):
#paper doi:10.1021/acssynbio.2c00120 ACS Synthetic Biology, 2022, Graph Computation Using Algorithmic Self-Assembly of DNA Molecules. 利用DNA等生物分子进行计算,可以追溯至上世纪90年代初,该领域这些年来不断进步并取得新成果,本文便是这样的一个案例。本文另辟蹊径,使用了一种称为DNA折纸的技术(即通过精巧地设计DNA序列,使其折叠成为某种特定形状),来解决一个“六顶点三色涂色”的图论计算问题。宏观上极少量的生物物质,其实包含着数量庞大的分子,因而,使用这些分子进行计算,是一个天然能提供巨大算力的策略,可以很轻松实现大量排列组合的暴力穷举,这就是生物计算概念提出的基本出发点之一。虽说被称为“DNA computing”,但它其实还远不及我们日常认识的通用电子计算机。本文的研究,是在特定图论问题上,人为列举出各个待求顶点的所有可能颜色,以及利用DNA链互补特性,设计相应序列,实现控制哪些顶点之间可以互相连接的规则。然后大量合成这样的分子,使其在特定实验条件下自由组合,最终利用AFM(原子力显微镜)扫描,找到符合特定结构形状的答案。由于使用了DNA折纸技术,AFM可以直接观察并识别出各顶点的“颜色”及连接组合,从而给出问题的求解。文章所解决的问题,被限定在特定范围,且只是概念验证阶段,未来要扩展到更多应用场景,使其具备“通用”或一定程度“通用”的程度,还有很长的路要走。
IF:3.700Q1 ACS synthetic biology, 2022-07-15. DOI: 10.1021/acssynbio.2c00120 PMID: 35703038
Abstract:
DNA molecules have been used as novel computing tools, by which Synthetic DNA was designed to execute computing processes with a programmable sequence. Here, we proposed a parallel computing method … >>>
DNA molecules have been used as novel computing tools, by which Synthetic DNA was designed to execute computing processes with a programmable sequence. Here, we proposed a parallel computing method using DNA origamis as agents to solve the three-color problem, an example of the graph problem. Each agent was fabricated with a DNA origami of ∼50 nm diameter and contained DNA probes with programmable sticky ends that execute preset computing processes. With the interaction of different nanoagents, DNA molecules self-assemble into spatial nanostructures, which embody the computation results of the three-color problem with polynomial numbers of computing nanoagents in a one-pot annealing step. The computing results were confirmed by atomic force microscopy. Our method is completely different from existing DNA computing methods in its computing algorithm, and it has an advantage in terms of computational complexity and results detection for solving graph problems. <<<
翻译
回到顶部