来自杂志 arXiv 的文献。
当前共找到 142 篇文献分享,本页显示第 41 - 60 篇。
41.
前进
(2024-07-31 11:35):
#paper DOI:https://doi.org/10.48550/arXiv.2006.16236 Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]//International conference on machine learning. PMLR, 2020: 5156-5165.
这篇论文提出了一种新型的线性Transformer模型,该模型通过将自注意力机制表达为线性点积的核特征映射,并利用矩阵乘法的结合性质,显著降低了传统Transformer在处理长序列时的计算复杂度,从O(N^2)降低到O(N)。作者展示了这种新模型不仅能够实现与标准Transformer相似的性能,而且在自回归预测长序列时速度提升了多达4000倍。此外,论文还探讨了Transformer与循环神经网络(RNN)之间的关系,证明了通过适当的转换,Transformer可以像RNN一样高效地进行自回归预测。
arXiv,
2020-06-29T17:55:38Z.
DOI: 10.48550/arXiv.2006.16236
Abstract:
Transformers achieve remarkable performance in several tasks but due to theirquadratic complexity, with respect to the input's length, they areprohibitively slow for very long sequences. To address this limitation, weexpress …
>>>
Transformers achieve remarkable performance in several tasks but due to theirquadratic complexity, with respect to the input's length, they areprohibitively slow for very long sequences. To address this limitation, weexpress the self-attention as a linear dot-product of kernel feature maps andmake use of the associativity property of matrix products to reduce thecomplexity from $\mathcal{O}\left(N^2\right)$ to $\mathcal{O}\left(N\right)$,where $N$ is the sequence length. We show that this formulation permits aniterative implementation that dramatically accelerates autoregressivetransformers and reveals their relationship to recurrent neural networks. Ourlinear transformers achieve similar performance to vanilla transformers andthey are up to 4000x faster on autoregressive prediction of very longsequences.
<<<
翻译
42.
符毓
(2024-06-30 23:02):
#paper doi.org/10.48550/arXiv.2404.17569, 2024, MaPa: Text-driven Photorealistic Material Painting for 3D Shapes. 本文提供了通过文字给3D模型渲染高质量材质表面的算法。
算法分为四步,首先,将网格分解为不同的片段,并使用片段控制图像生成技术(具体采用 ControlNet)将它们投影到 2D 图像上;第二,根据相似的材质属性和外观将这些片段分类。第三,每个材质组都会经过选择过程,会在此过程中识别和优化合适的材质图,以准确表示其纹理和特性。最后是迭代的,不断在多个视图中渲染和优化这些材质图,填补视觉数据中的任何空白,并重复分组和优化阶段,直到网格的每个片段都由相应的材质图准确表示。这种综合方法可确保根据 3D 网格每个片段的独特特征定制详细而逼真的材质纹理。
arXiv,
2024.
DOI: 10.48550/arXiv.2404.17569
Abstract:
This paper aims to generate materials for 3D meshes from text descriptions.Unlike existing methods that synthesize texture maps, we propose to generatesegment-wise procedural material graphs as the appearance representation, whichsupports …
>>>
This paper aims to generate materials for 3D meshes from text descriptions.Unlike existing methods that synthesize texture maps, we propose to generatesegment-wise procedural material graphs as the appearance representation, whichsupports high-quality rendering and provides substantial flexibility inediting. Instead of relying on extensive paired data, i.e., 3D meshes withmaterial graphs and corresponding text descriptions, to train a material graphgenerative model, we propose to leverage the pre-trained 2D diffusion model asa bridge to connect the text and material graphs. Specifically, our approachdecomposes a shape into a set of segments and designs a segment-controlleddiffusion model to synthesize 2D images that are aligned with mesh parts. Basedon generated images, we initialize parameters of material graphs and fine-tunethem through the differentiable rendering module to produce materials inaccordance with the textual description. Extensive experiments demonstrate thesuperior performance of our framework in photorealism, resolution, andeditability over existing methods. Project page: https://zju3dv.github.io/MaPa
<<<
翻译
43.
前进
(2024-06-30 22:29):
#paper Liu R , Li Z , Fan X ,et al.Learning Deformable Image Registration from Optimization: Perspective, Modules, Bilevel Training and Beyond[J]. 2020.DOI:10.48550/arXiv.2004.14557.
论文提出了一个新的基于深度学习的框架,旨在通过多尺度传播优化微分同胚模型来整合传统变形配准方法和基于深度学习的方法的优势,并避免它们的局限性。具体来说,作者提出了一个通用的优化模型来解决微分同胚配准问题,并开发了一系列可学习的架构,以从粗到细的学习图像特征完成配准。此外,论文还提出了一种新颖的双层自调整训练策略,允许高效地搜索任务特定的超参数,这增加了对各种类型数据的灵活性,同时减少了计算和人力负担。
作者多种数据集上进行了配准实验,包括大脑MRI数据的图像到图谱配准和肝脏CT数据的图像到图像配准。实验结果表明,所提出的方法在保持微分同胚的同时,达到了最先进的性能。此外,作者还将其框架应用于多模态图像配准,并研究了其配准如何支持医学图像分析的下游任务,包括多模态融合和图像分割。
arXiv,
2020.
DOI: 10.48550/arXiv.2004.14557
Abstract:
Conventional deformable registration methods aim at solving an optimizationmodel carefully designed on image pairs and their computational costs areexceptionally high. In contrast, recent deep learning based approaches canprovide fast deformation …
>>>
Conventional deformable registration methods aim at solving an optimizationmodel carefully designed on image pairs and their computational costs areexceptionally high. In contrast, recent deep learning based approaches canprovide fast deformation estimation. These heuristic network architectures arefully data-driven and thus lack explicit geometric constraints, e.g.,topology-preserving, which are indispensable to generate plausibledeformations. We design a new deep learning based framework to optimize adiffeomorphic model via multi-scale propagation in order to integrateadvantages and avoid limitations of these two categories of approaches.Specifically, we introduce a generic optimization model to formulatediffeomorphic registration and develop a series of learnable architectures toobtain propagative updating in the coarse-to-fine feature space. Moreover, wepropose a novel bilevel self-tuned training strategy, allowing efficient searchof task-specific hyper-parameters. This training strategy increases theflexibility to various types of data while reduces computational and humanburdens. We conduct two groups of image registration experiments on 3D volumedatasets including image-to-atlas registration on brain MRI data andimage-to-image registration on liver CT data. Extensive results demonstrate thestate-of-the-art performance of the proposed method with diffeomorphicguarantee and extreme efficiency. We also apply our framework to challengingmulti-modal image registration, and investigate how our registration to supportthe down-streaming tasks for medical image analysis including multi-modalfusion and image segmentation.
<<<
翻译
44.
张浩彬
(2024-06-30 10:34):
@paper https://doi.org/10.48550/arXiv.2403.10131 RAFT: Adapting Language Model to Domain Specific RAG
对我而言很有启发性的paper。在大型文本数据集上预训练大型语言模型(LLMs)已成为一种标准范式。当将这些LLMs用于许多下游应用时,通常会将新的知识(例如,时效性新闻或私有领域知识)通过基于RAG(Retrieval-Augmented Generation,检索增强生成)的提示或微调,融入到预训练模型中。然而,模型如何以最优方式获取这种新知识仍然是一个开放的问题。在这篇论文中,提出了检索增强微调(Retrieval Augmented Fine Tuning,RAFT),简单来说,就是你要用rag的东西微调一下,并使用思维链熟悉一下要做的事情。当然,rag本身和微调就是两个套路,现在合在一起,似乎有点本末倒置,这也是这篇论文我认为没有讨论清楚的地方。不过这些不清楚的地方也是新的研究空间。
arXiv,
2024.
DOI: 10.48550/arXiv.2403.10131
Abstract:
Pretraining Large Language Models (LLMs) on large corpora of textual data isnow a standard paradigm. When using these LLMs for many downstreamapplications, it is common to additionally bake in new …
>>>
Pretraining Large Language Models (LLMs) on large corpora of textual data isnow a standard paradigm. When using these LLMs for many downstreamapplications, it is common to additionally bake in new knowledge (e.g.,time-critical news, or private domain knowledge) into the pretrained modeleither through RAG-based-prompting, or fine-tuning. However, the optimalmethodology for the model to gain such new knowledge remains an open question.In this paper, we present Retrieval Augmented FineTuning (RAFT), a trainingrecipe that improves the model's ability to answer questions in a "open-book"in-domain settings. In RAFT, given a question, and a set of retrieveddocuments, we train the model to ignore those documents that don't help inanswering the question, which we call, distractor documents. RAFT accomplishesthis by citing verbatim the right sequence from the relevant document thatwould help answer the question. This coupled with RAFT's chain-of-thought-styleresponse helps improve the model's ability to reason. In domain-specific RAG,RAFT consistently improves the model's performance across PubMed, HotpotQA, andGorilla datasets, presenting a post-training recipe to improve pre-trained LLMsto in-domain RAG. RAFT's code and demo are open-sourced atgithub.com/ShishirPatil/gorilla.
<<<
翻译
45.
张浩彬
(2024-05-31 07:31):
#paper doi:https://doi.org/10.48550/arXiv.2403.10131
RAFT: Adapting Language Model to Domain Specific RAG
简单但有效的思路。传统大模型变为领域 应用,我们可以微调也可以使用rag,但微软说,我们可以应该基于rag微调。RAFT 是一种将预训练的大型语言模型微调到特定领域 RAG 设置的通用方法。在特定领域 RAG 中,模型需要根据特定领域的一组文档回答问题,例如企业中的私有文件。这与通用 RAG 不同,因为通用 RAG 中的模型并不知道它将在哪个领域进行测试。简单来说,微调是闭卷考试,靠记忆回答。rag是开卷开始,虽然我没记忆,但是考试的时候可以翻书,那么raft就是开卷考试前,我还是先看了一下教科书,虽然没看全,但是大概知道考题长什么样子,但没关系,因为考试的时候我还可以翻书。
arXiv,
2024.
Abstract:
No abstract available.
46.
尹志
(2024-05-30 15:52):
#paper Protein Conformation Generation via Force-Guided SE(3) Diffusion Models https://doi.org/10.48550/arXiv.2403.14088
字节跳动的一个新工作,还是蛋白质构象生成,还是SE(3) diffusion model, 不过区别于常见的静态构象的生成,这个工作提出了动态构象的生成,
这当然有意义的多,毕竟真实世界的蛋白质构象是动态的,是一个构象分布。文章引入物理信息作为guidance,这个思路很有意思,因为这样既可以
兼顾物理系统的先验,又回避了类似md这样的纯模型计算的性能问题,类似将md的计算进行了抽象,形成先验,作为guidance,然后利用生成模型进行生成。
arXiv,
2024.
DOI: 10.48550/arXiv.2403.14088
Abstract:
The conformational landscape of proteins is crucial to understanding theirfunctionality in complex biological processes. Traditional physics-basedcomputational methods, such as molecular dynamics (MD) simulations, suffer fromrare event sampling and long equilibration …
>>>
The conformational landscape of proteins is crucial to understanding theirfunctionality in complex biological processes. Traditional physics-basedcomputational methods, such as molecular dynamics (MD) simulations, suffer fromrare event sampling and long equilibration time problems, hindering theirapplications in general protein systems. Recently, deep generative modelingtechniques, especially diffusion models, have been employed to generate novelprotein conformations. However, existing score-based diffusion methods cannotproperly incorporate important physical prior knowledge to guide the generationprocess, causing large deviations in the sampled protein conformations from theequilibrium distribution. In this paper, to overcome these limitations, wepropose a force-guided SE(3) diffusion model, ConfDiff, for proteinconformation generation. By incorporating a force-guided network with a mixtureof data-based score models, ConfDiff can can generate protein conformationswith rich diversity while preserving high fidelity. Experiments on a variety ofprotein conformation prediction tasks, including 12 fast-folding proteins andthe Bovine Pancreatic Trypsin Inhibitor (BPTI), demonstrate that our methodsurpasses the state-of-the-art method.
<<<
翻译
47.
尹志
(2024-04-30 22:48):
#paper doi:https://doi.org/10.48550/arXiv.2211.07697,NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022. Do Neural Networks Trained with Topological Features Learn Different Internal Representations? 作者主要讨论了使用拓扑特征训练神经网络和使用常规数据直接进行神经网络训练在表征上的区别。结论很有意思,比较容易猜到的是,两者确实有区别,特别是在作者选择的metrics下,这也说明了拓扑机器学习的价值。但作者发现在一些情况下,也存在可以利用简单的表征来替代拓扑特征训练的模型。当然,在具体的数据场景下怎么样提取出合适的拓扑特征显著区别于使用raw data可以提取的特征,这仍是一个开放的主题。
arXiv,
2022.
DOI: 10.48550/arXiv.2211.07697
Abstract:
There is a growing body of work that leverages features extracted viatopological data analysis to train machine learning models. While this field,sometimes known as topological machine learning (TML), has seen …
>>>
There is a growing body of work that leverages features extracted viatopological data analysis to train machine learning models. While this field,sometimes known as topological machine learning (TML), has seen some notablesuccesses, an understanding of how the process of learning from topologicalfeatures differs from the process of learning from raw data is still limited.In this work, we begin to address one component of this larger issue by askingwhether a model trained with topological features learns internalrepresentations of data that are fundamentally different than those learned bya model trained with the original raw data. To quantify ``different'', weexploit two popular metrics that can be used to measure the similarity of thehidden representations of data within neural networks, neural stitching andcentered kernel alignment. From these we draw a range of conclusions about howtraining with topological features does and does not change the representationsthat a model learns. Perhaps unsurprisingly, we find that structurally, thehidden representations of models trained and evaluated on topological featuresdiffer substantially compared to those trained and evaluated on thecorresponding raw data. On the other hand, our experiments show that in somecases, these representations can be reconciled (at least to the degree requiredto solve the corresponding task) using a simple affine transformation. Weconjecture that this means that neural networks trained on raw data may extractsome limited topological features in the process of making predictions.
<<<
翻译
48.
前进
(2024-04-30 11:44):
#paper Han D, Pan X, Han Y, et al. Flatten transformer: Vision transformer using focused linear attention[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 5961-5971. 自注意力(self-attention)在计算机视觉任务中应用时面临的主要挑战是其二次计算复杂度,这使得处理视觉任务变得非常昂贵。作为Softmax注意力的一种替代方案,线性注意力通过精心设计的映射函数来近似Softmax操作,从而将计算复杂度从二次降低到线性。尽管线性注意力在理论上更加高效,但现有的线性注意力方法要么性能显著下降,要么需要额外的计算开销,这限制了它们的实际应用。为了克服这些限制,论文提出了FLA模块,它通过两个主要的改进来提高效率和表达能力:焦点能力:1 通过一个简单的映射函数,增强了自注意力对最信息特征的聚焦能力。特征多样性:引入了一个高效的秩恢复模块,通过深度卷积(DWC)来恢复注意力矩阵的秩,增加了特征的多样性。通过在多个先进的视觉Transformer模型上的广泛实验,FLA模块在多个基准测试中均显示出了一致的性能提升。
arXiv,
2023.
Abstract:
No abstract available.
49.
张浩彬
(2024-04-29 20:35):
#paper doi:
https://doi.org/10.48550/arXiv.2211.14730
A Time Series is Worth 64 Words: Long-term Forecasting with Transformers
ICLR2023的文章,提出了PatchTST。受vision Transformer的启发,把patch技术引入到时序问题。并且回应了早期另一篇认为Transformer用在时间序列其实并不比传统线性模型好的文章(Are transformers effective for time series forecasting?(2022)),重新取得了sota。然而23年底,又有新方法出现了,讨论了其实关键不是transformer,而是patch技术
arXiv,
2022.
DOI: 10.48550/arXiv.2211.14730
Abstract:
We propose an efficient design of Transformer-based models for multivariatetime series forecasting and self-supervised representation learning. It isbased on two key components: (i) segmentation of time series intosubseries-level patches which …
>>>
We propose an efficient design of Transformer-based models for multivariatetime series forecasting and self-supervised representation learning. It isbased on two key components: (i) segmentation of time series intosubseries-level patches which are served as input tokens to Transformer; (ii)channel-independence where each channel contains a single univariate timeseries that shares the same embedding and Transformer weights across all theseries. Patching design naturally has three-fold benefit: local semanticinformation is retained in the embedding; computation and memory usage of theattention maps are quadratically reduced given the same look-back window; andthe model can attend longer history. Our channel-independent patch time seriesTransformer (PatchTST) can improve the long-term forecasting accuracysignificantly when compared with that of SOTA Transformer-based models. We alsoapply our model to self-supervised pre-training tasks and attain excellentfine-tuning performance, which outperforms supervised training on largedatasets. Transferring of masked pre-trained representation on one dataset toothers also produces SOTA forecasting accuracy. Code is available at:https://github.com/yuqinie98/PatchTST.
<<<
翻译
50.
林海onrush
(2024-04-02 00:39):
#paper, Curriculum Learning and Imitation Learning for Model-free Control on Financial Time-series, doi:https://doi.org/10.48550/arXiv.2311.13326,这篇论文针对金融时间序列的无模型控制问题,提出了一种新颖的解决思路。传统的强化学习方法在这一领域面临训练数据有限且噪声大的挑战。为此,本文探索了将课程学习和模仿学习这两种在机器人领域已有成功应用的范式引入到金融问题中。通过在两个代表性的数据集上的大量实证实验,论文发现课程学习能够显著提升强化学习算法在复杂金融时间序列决策中的表现,优于所有baseline方法。课程学习通过数据增强逐步提高训练任务的难度,体现了 "由易到难" 的学习策略。实验表明,这种适度的数据平滑可以有效降低数据中的噪声,使得强化学习算法更好地捕捉到真实的市场信号。
相比之下,直接应用模仿学习的效果并不理想。进一步的分析表明,这可能是由于模仿学习在去除噪声的同时,也丢失了部分关键的市场信号。从统计学的角度看,模仿学习实现了噪声和信号的分解,但过度的去噪反而损害了策略学习的效果。
本文的理论贡献在于提出了一个信号噪声分解的统计框架,用于解释课程学习和模仿学习在金融时间序列问题上的效果差异。这一框架也为算法的改进提供了新的思路。此外,论文还讨论了一些有待未来进一步探索的方向,包括考察信号噪声分解的非平稳特性,探索其他形式的数据平滑方法,以及将课程学习拓展应用到其他类型的高噪声时间序列学习任务中。
arXiv,
2023.
DOI: 10.48550/arXiv.2311.13326
Abstract:
Curriculum learning and imitation learning have been leveraged extensively inthe robotics domain. However, minimal research has been done on leveragingthese ideas on control tasks over highly stochastic time-series data. Here, …
>>>
Curriculum learning and imitation learning have been leveraged extensively inthe robotics domain. However, minimal research has been done on leveragingthese ideas on control tasks over highly stochastic time-series data. Here, wetheoretically and empirically explore these approaches in a representativecontrol task over complex time-series data. We implement the fundamental ideasof curriculum learning via data augmentation, while imitation learning isimplemented via policy distillation from an oracle. Our findings reveal thatcurriculum learning should be considered a novel direction in improvingcontrol-task performance over complex time-series. Our ample random-seedout-sample empirics and ablation studies are highly encouraging for curriculumlearning for time-series control. These findings are especially encouraging aswe tune all overlapping hyperparameters on the baseline -- giving an advantageto the baseline. On the other hand, we find that imitation learning should beused with caution.
<<<
翻译
51.
符毓
(2024-03-31 23:50):
#paper doi.org/10.48550/arXiv.2403.16527, 2024, Hallucination Detection in Foundation Models for Decision-Making: A Flexible Definition and Review of the State of the Art. 智能控制系统能通过预训练在各场景下得到广泛应用,但在训练外场景下表现糟糕。大模型出现有希望提供现有训练方式缺乏的推理能力,但大模型会产生“幻觉”(听起来合理但很差的决策)。本文尝试定义“幻觉”,并给出检测和缓解规划中出现“幻觉”的方法分类,评估指标和数据集等
arXiv,
2024.
DOI: 10.48550/arXiv.2403.16527
Abstract:
Autonomous systems are soon to be ubiquitous, from manufacturing autonomy toagricultural field robots, and from health care assistants to the entertainmentindustry. The majority of these systems are developed with modularsub-components …
>>>
Autonomous systems are soon to be ubiquitous, from manufacturing autonomy toagricultural field robots, and from health care assistants to the entertainmentindustry. The majority of these systems are developed with modularsub-components for decision-making, planning, and control that may behand-engineered or learning-based. While these existing approaches have beenshown to perform well under the situations they were specifically designed for,they can perform especially poorly in rare, out-of-distribution scenarios thatwill undoubtedly arise at test-time. The rise of foundation models trained onmultiple tasks with impressively large datasets from a variety of fields hasled researchers to believe that these models may provide common sense reasoningthat existing planners are missing. Researchers posit that this common sensereasoning will bridge the gap between algorithm development and deployment toout-of-distribution tasks, like how humans adapt to unexpected scenarios. Largelanguage models have already penetrated the robotics and autonomous systemsdomains as researchers are scrambling to showcase their potential use cases indeployment. While this application direction is very promising empirically,foundation models are known to hallucinate and generate decisions that maysound reasonable, but are in fact poor. We argue there is a need to step backand simultaneously design systems that can quantify the certainty of a model'sdecision, and detect when it may be hallucinating. In this work, we discuss thecurrent use cases of foundation models for decision-making tasks, provide ageneral definition for hallucinations with examples, discuss existingapproaches to hallucination detection and mitigation with a focus on decisionproblems, and explore areas for further research in this exciting field.
<<<
翻译
52.
符毓
(2024-02-29 22:43):
#paper doi.org/10.48550/arXiv.2304.09349
2023, LLM as A Robotic Brain: Unifying Egocentric Memory and Control. LLM 代理通过预训练获得知识和推理能力来解决机器人技术和规划任务。然而,人们在教机器人“该做什么”付出了较多努力。文章重点在于传达机器人不能做什么,以及满足安全操作标准。针对在协作环境中部署LLM代理,提出了解决LLM模型固有的概率性和不能应对复杂条件的约束方式。最终在VirtualHome环境和真实机器人实验上都表明,能在不影响目标完成率的情况下满足安全约束条件
arXiv,
2023.
Abstract:
No abstract available.
53.
小W
(2024-02-29 20:28):
#paper doi:arXiv:2203.13906 Biolink Model: A Universal Schema for Knowledge Graphs in
Clinical, Biomedical, and Translational Science 本文介绍了欧洲分子生物学实验室对于生命进程的认识 Biolink 模型,其使用yaml变体 linkml ( Linked data Modeling Language )定义一组分层的、相互关联的类以及它们之间的关系,以此来表征转化科学中的实体以及这些实体之间的联系。其工作包含标准生物模式、样本、TranslatorMinimal三个模型库以及使用其模型关联不同本体数据的方法。基于此模型,其他团队开发了NIH 的Biomedical Data Translator项目,以及 2023 发表于 Nat. Biotechnol 的 BioCypher 。
arXiv,
2022.
DOI: 10.48550/arXiv.2203.13906
Abstract:
Within clinical, biomedical, and translational science, an increasing numberof projects are adopting graphs for knowledge representation. Graph-based datamodels elucidate the interconnectedness between core biomedical concepts,enable data structures to be easily …
>>>
Within clinical, biomedical, and translational science, an increasing numberof projects are adopting graphs for knowledge representation. Graph-based datamodels elucidate the interconnectedness between core biomedical concepts,enable data structures to be easily updated, and support intuitive queries,visualizations, and inference algorithms. However, knowledge discovery acrossthese "knowledge graphs" (KGs) has remained difficult. Data set heterogeneityand complexity; the proliferation of ad hoc data formats; poor compliance withguidelines on findability, accessibility, interoperability, and reusability;and, in particular, the lack of a universally-accepted, open-access model forstandardization across biomedical KGs has left the task of reconciling datasources to downstream consumers. Biolink Model is an open source data modelthat can be used to formalize the relationships between data structures intranslational science. It incorporates object-oriented classification andgraph-oriented features. The core of the model is a set of hierarchical,interconnected classes (or categories) and relationships between them (orpredicates), representing biomedical entities such as gene, disease, chemical,anatomical structure, and phenotype. The model provides class and edgeattributes and associations that guide how entities should relate to oneanother. Here, we highlight the need for a standardized data model for KGs,describe Biolink Model, and compare it with other models. We demonstrate theutility of Biolink Model in various initiatives, including the Biomedical DataTranslator Consortium and the Monarch Initiative, and show how it has supportedeasier integration and interoperability of biomedical KGs, bringing togetherknowledge from multiple sources and helping to realize the goals oftranslational science.
<<<
翻译
54.
🐼太真实
(2024-02-29 10:04):
#paper ProPainter: Improving Propagation and Transformer for Video Inpainting 本文介绍了一种新的视频修复技术——ProPainter,通过双域传播和掩码引导稀疏视频Transformer的设计,实现了高效而准确的视频修复。文章详细介绍了ProPainter的三个关键组成部分:循环流场完成、双域传播和掩码引导稀疏视频Transformer,并提供了相应的技术细节和实验结果。
arXiv,
2023.
DOI: 10.48550/arXiv.2309.03897
Abstract:
Flow-based propagation and spatiotemporal Transformer are two mainstreammechanisms in video inpainting (VI). Despite the effectiveness of thesecomponents, they still suffer from some limitations that affect theirperformance. Previous propagation-based approaches are …
>>>
Flow-based propagation and spatiotemporal Transformer are two mainstreammechanisms in video inpainting (VI). Despite the effectiveness of thesecomponents, they still suffer from some limitations that affect theirperformance. Previous propagation-based approaches are performed separatelyeither in the image or feature domain. Global image propagation isolated fromlearning may cause spatial misalignment due to inaccurate optical flow.Moreover, memory or computational constraints limit the temporal range offeature propagation and video Transformer, preventing exploration ofcorrespondence information from distant frames. To address these issues, wepropose an improved framework, called ProPainter, which involves enhancedProPagation and an efficient Transformer. Specifically, we introducedual-domain propagation that combines the advantages of image and featurewarping, exploiting global correspondences reliably. We also propose amask-guided sparse video Transformer, which achieves high efficiency bydiscarding unnecessary and redundant tokens. With these components, ProPainteroutperforms prior arts by a large margin of 1.46 dB in PSNR while maintainingappealing efficiency.
<<<
翻译
55.
尹志
(2024-02-28 22:09):
#paper An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists doi: https://doi.org/10.48550/arXiv.1710.04019 生成式AI风光无两,Sora甚嚣尘上,虽然我还做不到这样的效果(对,我就是酸),但我却认为这不是终极方案,特别是对于物理世界、生物系统。The Bitter Lesson中对scaling law的强调甚至信奉,在语言、视频这样的领域有其价值,但生命科学、物理系统有数十亿年的的历史(物理系统应该是创始之初把),生命的演化、物理系统的本源,人类对其千百年来积累的原理性探索,应该是更优的先验。哦,回到这篇paper的主题。拓扑数据分析,是一种将系统的拓扑与几何性质引入分析建模过程,从而对系统获取更深刻的理解的工具。本篇综述对这个工具做了细致的讲解并对它的应用领域做了分析和tutorial。对拓扑数据分析这门技术的数学前置也做了简单但细致的介绍,主要是代数拓扑和计算几何。之所以有前面一段的碎碎念,就是因为我结合最近的一些实践,切实感受到拓扑和几何这些抽象的数学工具与生成式AI的结合,对生物系统和物理世界的描述,也许是优于目前暴力怼计算的一种更高效的建模方式,能够更深入系统的物理本质。如果你也相信物理系统和生命世界的简单高效的,是美丽简洁的,建议尝试一下这些新的技术。对了,这篇综述的revison信息是[Submitted on 11 Oct 2017 (v1), last revised 25 Feb 2021 (this version, v2)], 是不是说明了点什么呢?
arXiv,
2017.
DOI: 10.48550/arXiv.1710.04019
Abstract:
Topological Data Analysis is a recent and fast growing field providing a setof new topological and geometric tools to infer relevant features for possiblycomplex data. This paper is a brief …
>>>
Topological Data Analysis is a recent and fast growing field providing a setof new topological and geometric tools to infer relevant features for possiblycomplex data. This paper is a brief introduction, through a few selectedtopics, to basic fundamental and practical aspects of \tda\ for non experts.
<<<
翻译
56.
前进
(2024-01-31 22:50):
#paper arxiv.org//pdf/2311.026 2023 Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection.
大型多模态模型 (LMM) GPT-4V(ision) 赋予 GPT-4 视觉grounding能力,使得通过视觉问答 (VQA) 范式处理某些任务成为可能。本文探讨了面向 VQA 的 GPT-4V 在最近流行的视觉异常检测(AD)中的潜力,并首次对流行的 MVTec AD 和 VisA 数据集进行定性和定量评估。 考虑到该任务需要图像/像素级评估,提出的 GPT-4V-AD 框架包含三个组成部分:1)粒度区域划分,2)提示设计,3)用于轻松定量评估的 Text2Segmentation,并做了一些不同的 尝试进行比较分析。 结果表明,GPT-4V可以通过VQA范式在零样本AD任务中取得一定的结果,例如在MVTec AD和VisA数据集上分别实现图像级77.1/88.0和像素级68.0/76.6 AU-ROC 。 然而,其性能与最先进的零样本方法(例如WinCLIP和CLIP-AD)相比仍然存在一定差距,需要进一步研究。 这项研究为零样本 AD 任务中面向 VQA 的 LMM 的研究提供了基线参考
arXiv,
2023.
DOI: 10.48550/arXiv.2311.02612
Abstract:
Large Multimodal Model (LMM) GPT-4V(ision) endows GPT-4 with visual groundingcapabilities, making it possible to handle certain tasks through the VisualQuestion Answering (VQA) paradigm. This paper explores the potential ofVQA-oriented GPT-4V …
>>>
Large Multimodal Model (LMM) GPT-4V(ision) endows GPT-4 with visual groundingcapabilities, making it possible to handle certain tasks through the VisualQuestion Answering (VQA) paradigm. This paper explores the potential ofVQA-oriented GPT-4V in the recently popular visual Anomaly Detection (AD) andis the first to conduct qualitative and quantitative evaluations on the popularMVTec AD and VisA datasets. Considering that this task requires bothimage-/pixel-level evaluations, the proposed GPT-4V-AD framework contains threecomponents: 1) Granular Region Division, 2) Prompt Designing, 3)Text2Segmentation for easy quantitative evaluation, and have made somedifferent attempts for comparative analysis. The results show that GPT-4V canachieve certain results in the zero-shot AD task through a VQA paradigm, suchas achieving image-level 77.1/88.0 and pixel-level 68.0/76.6 AU-ROCs on MVTecAD and VisA datasets, respectively. However, its performance still has acertain gap compared to the state-of-the-art zero-shot method, e.g., WinCLIPann CLIP-AD, and further research is needed. This study provides a baselinereference for the research of VQA-oriented LMM in the zero-shot AD task, and wealso post several possible future works. Code is available at\url{https://github.com/zhangzjn/GPT-4V-AD}.
<<<
翻译
57.
尹志
(2024-01-31 10:39):
#paper doi: https://doi.org/10.48550/arXiv.2304.02643 Segment Anything。Meta在2023年的一篇工作,提出了一个CV领域的基础模型。文章的目标很清楚,通过prompt的方式,实现通用的segmentatoin任务。虽然在互联网上爆炒一轮后趋于平淡,但是对CV社区的影响还是非常大的。后续的Grounding-DINO,Grounded-SAM等工作,都有着不错的效果,而且对后续CV任务的解决给出了一套不同的思考范式。整个工作偏工程,或者想法上原创性的亮点不多,网络结构上也充分借鉴了大量基于Transformer的创新工作。值得一提的正是工程上的思路或者说解决方案。meta提出了一个新颖的任务,即:如何通过一个通用的任务来解决图像分割。进而设计训练流程和对应的损失。在过程中,设计了一套有效的数据标注引擎,实现了高效标注数据生产,这对于行业应用有着很强的借鉴价值。
从研究角度来看,如何充分利用预训练好的sam模型,大模型中的先验如何提取,从而为特定领域下游任务提供支持是一个重要的研究方向。
arXiv,
2023.
DOI: 10.48550/arXiv.2304.02643
Abstract:
We introduce the Segment Anything (SA) project: a new task, model, anddataset for image segmentation. Using our efficient model in a data collectionloop, we built the largest segmentation dataset to …
>>>
We introduce the Segment Anything (SA) project: a new task, model, anddataset for image segmentation. Using our efficient model in a data collectionloop, we built the largest segmentation dataset to date (by far), with over 1billion masks on 11M licensed and privacy respecting images. The model isdesigned and trained to be promptable, so it can transfer zero-shot to newimage distributions and tasks. We evaluate its capabilities on numerous tasksand find that its zero-shot performance is impressive -- often competitive withor even superior to prior fully supervised results. We are releasing theSegment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and11M images at https://segment-anything.com to foster research into foundationmodels for computer vision.
<<<
翻译
58.
🐼太真实
(2024-01-30 21:45):
#paper: doi:2110.11316 文章《CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP》介绍了一种名为CLOOB(Contrastive Leave One Out Boost)的新型自监督学习方法。这种方法结合了现代霍普菲尔德网络(Modern Hopfield Networks)和InfoLOOB目标(Leave One Out Bound),用于提升对比学习的效能。CLOOB在零样本转移学习(zero-shot transfer learning)方面,不论在哪种架构或数据集上,均优于之前的CLIP方法。
CLOOB的核心是使用现代霍普菲尔德网络来增强数据的共现性和协方差结构。这种网络与传统的霍普菲尔德网络相比,具有更高的存储容量和更快的检索速度。通过使用这些网络,CLOOB能够加强输入样本中特征的共现性和协方差结构,有效地提取和强化数据中的重要特征。
此外,CLOOB还采用了InfoLOOB目标函数来避免InfoNCE目标函数中出现的饱和问题。InfoLOOB目标是一种对比学习的目标,用于处理匹配对和不匹配对之间的关系,以减少目标函数的饱和,并使得学习过程更加高效。
arXiv,
2021.
DOI: 10.48550/arXiv.2110.11316
CLOOB:带有 InfoLOOB 的现代 Hopfield 网络的性能优于 CLIP
Abstract:
CLIP yielded impressive results on zero-shot transfer learning tasks and isconsidered as a foundation model like BERT or GPT3. CLIP vision models thathave a rich representation are pre-trained using the …
>>>
CLIP yielded impressive results on zero-shot transfer learning tasks and isconsidered as a foundation model like BERT or GPT3. CLIP vision models thathave a rich representation are pre-trained using the InfoNCE objective andnatural language supervision before they are fine-tuned on particular tasks.Though CLIP excels at zero-shot transfer learning, it suffers from anexplaining away problem, that is, it focuses on one or few features, whileneglecting other relevant features. This problem is caused by insufficientlyextracting the covariance structure in the original multi-modal data. Wesuggest to use modern Hopfield networks to tackle the problem of explainingaway. Their retrieved embeddings have an enriched covariance structure derivedfrom co-occurrences of features in the stored embeddings. However, modernHopfield networks increase the saturation effect of the InfoNCE objective whichhampers learning. We propose to use the InfoLOOB objective to mitigate thissaturation effect. We introduce the novel "Contrastive Leave One Out Boost"(CLOOB), which uses modern Hopfield networks for covariance enrichment togetherwith the InfoLOOB objective. In experiments we compare CLOOB to CLIP afterpre-training on the Conceptual Captions and the YFCC dataset with respect totheir zero-shot transfer learning performance on other datasets. CLOOBconsistently outperforms CLIP at zero-shot transfer learning across allconsidered architectures and datasets.
<<<
翻译
59.
尹志
(2023-12-31 14:32):
#paper Consistency Models https://doi.org/10.48550/arXiv.2303.01469 扩散模型目前已经是生成式AI的核心技术方案了,但是由于它的迭代生成的性质,使得采样速度一直存在问题,因此在实际应用的场景下就会遇到阻碍。CM(consistency models)作为常规的扩散模型的高效改进方案,基于PE(probability flow) ODE轨道,提出一个针对ODE轨道(可以认为是演化迭代的步骤)上的映射,使得我们能够从任意轨道点,即任意迭代的timestep,映射到初始点,即原图。cm模型的提出,让单步扩散模型采样的质量变得更高,从而带动了大量实际应用的产生,包括图像编辑、图像补全等。目前大量基于扩散模型的实际应用,都已经使用了cm。这个是年初的时候Yang Song大佬和Ilya Sutskever一起的工作,四个作者全部都是来自openAI的扩散模型大佬。
arXiv,
2023.
DOI: 10.48550/arXiv.2303.01469
Abstract:
Diffusion models have significantly advanced the fields of image, audio, andvideo generation, but they depend on an iterative sampling process that causesslow generation. To overcome this limitation, we propose consistency …
>>>
Diffusion models have significantly advanced the fields of image, audio, andvideo generation, but they depend on an iterative sampling process that causesslow generation. To overcome this limitation, we propose consistency models, anew family of models that generate high quality samples by directly mappingnoise to data. They support fast one-step generation by design, while stillallowing multistep sampling to trade compute for sample quality. They alsosupport zero-shot data editing, such as image inpainting, colorization, andsuper-resolution, without requiring explicit training on these tasks.Consistency models can be trained either by distilling pre-trained diffusionmodels, or as standalone generative models altogether. Through extensiveexperiments, we demonstrate that they outperform existing distillationtechniques for diffusion models in one- and few-step sampling, achieving thenew state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 forone-step generation. When trained in isolation, consistency models become a newfamily of generative models that can outperform existing one-step,non-adversarial generative models on standard benchmarks such as CIFAR-10,ImageNet 64x64 and LSUN 256x256.
<<<
翻译
60.
🐼太真实
(2023-12-28 20:39):
#paper https://doi.org/10.48550/arXiv.2312.03701 , Self-conditioned Image Generation via Generating Representations
这篇文章介绍了一种名为“表示条件图像生成”(RCG)的新型图像生成框架。RCG 不依赖于人类标注,而是基于自监督的表示分布来生成图像。使用预训练的编码器将图像分布映射到表示分布,然后通过表示扩散模型(RDM)从中采样,最后通过像素生成器根据采样的表示生成图像。RCG 在 ImageNet 256×256 数据集上实现了显著的性能提升,其 FID 和 IS 分别达到了 3.31 和 253.4。这个方法不仅显著提升了类无条件图像生成的水平,而且与当前领先的类条件图像生成方法相比也具有竞争力,弥补了这两种任务之间长期存在的性能差距。
arXiv,
2023.
DOI: 10.48550/arXiv.2312.03701
Abstract:
This paper presents $\textbf{R}$epresentation-$\textbf{C}$onditioned image$\textbf{G}$eneration (RCG), a simple yet effective image generation frameworkwhich sets a new benchmark in class-unconditional image generation. RCG doesnot condition on any human annotations. Instead, it …
>>>
This paper presents $\textbf{R}$epresentation-$\textbf{C}$onditioned image$\textbf{G}$eneration (RCG), a simple yet effective image generation frameworkwhich sets a new benchmark in class-unconditional image generation. RCG doesnot condition on any human annotations. Instead, it conditions on aself-supervised representation distribution which is mapped from the imagedistribution using a pre-trained encoder. During generation, RCG samples fromsuch representation distribution using a representation diffusion model (RDM),and employs a pixel generator to craft image pixels conditioned on the sampledrepresentation. Such a design provides substantial guidance during thegenerative process, resulting in high-quality image generation. Tested onImageNet 256$\times$256, RCG achieves a Frechet Inception Distance (FID) of3.31 and an Inception Score (IS) of 253.4. These results not only significantlyimprove the state-of-the-art of class-unconditional image generation but alsorival the current leading methods in class-conditional image generation,bridging the long-standing performance gap between these two tasks. Code isavailable at https://github.com/LTH14/rcg.
<<<
翻译