来自用户 徐炳祥 的文献。
当前共找到 43 篇文献分享,本页显示第 41 - 43 篇。
41.
徐炳祥 (2022-09-22 22:58):
#paper doi: 10.1186/s13059-022-02757-0 Genome Biology, 2022, Genetic regulation of RNA splicing in human pancreatic islets。在胰岛细胞中存在的非编码编译影响了细胞转录组,从而在I型和II型糖尿病发病过程中可能扮演重要角色。本文在由399名患者组成的队列中分析了一类特殊的常见基因组变异(sQTL,splicing QTL,那些能可变剪接事件的QTL)。sQTL 的靶基因不同于eQTL,暗示着两类QTL可能独立发挥作用。作者识别了一批新的与sQTL关联的I型和II型糖尿病风险基因。作者据此认为胰岛细胞中的可变剪接事件是重要的糖尿病风险因素。
IF:10.100Q1 Genome biology, 2022-09-15. DOI: 10.1186/s13059-022-02757-0 PMID: 36109769 PMCID:PMC9479353
Abstract:
BACKGROUND: Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 … >>>
BACKGROUND: Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown.RESULTS: We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3.CONCLUSIONS: These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit. <<<
翻译
背景: 影响胰岛基因转录的非编码遗传变异在 2 型糖尿病 (T2D) 的易感性中起主要作用,也可能导致 1 型糖尿病 (T1D) 风险。然而,对于许多基因座,非编码变异影响糖尿病易感性的机制尚不清楚。 结果: 我们检查了 399 例人类供体胰岛中的剪接 QTL (sQTL),并观察到常见的遗传变异对在胰岛生物学和糖尿病中具有成熟作用的基因剪接具有广泛影响。同时,我们分析表达 QTL (eQTL) 并使用转录组范围的关联以及遗传共定位研究将胰岛 sQTL 或 eQTL 分配给 T2D 和 T1D 易感信号,其中许多信号缺乏候选效应基因。该分析揭示了生物学上合理的机制,包括 T2D 与 sQTL 的关联,该 sQTL 在 ERO1B 中产生无义亚型,ERO1B 是 ER 应激和胰岛素原生物合成的调节因子。扩展的 T2D 风险效应基因列表揭示了过度表达的通路,包括 G 蛋白介导的 cAMP 产生的调节因子。sQTL 的分析还揭示了 T1D 易感性的候选效应基因,例如 DCLRE1B、衰老调节因子和 lncRNA MEG3。 结论: 这些数据揭示了常见遗传变异对胰岛 RNA 剪接的广泛影响。结果支持剪接变异在糖尿病易感性中的作用,并提供了一组具有潜在治疗益处的新遗传靶点。
42.
徐炳祥 (2022-08-18 17:16):
#paper doi: 10.1038/s41586-022-05030-3 Nature, 2022, Brown-fat-mediated tumour suppression by cold-altered global metabolism。有氧糖酵解是肿瘤细胞获取能量的主要方式,此过程需消耗大量葡萄糖,因此肿瘤组织对葡萄糖饥饿敏感。而暴露于寒冷环境中的动物通过棕色脂肪细胞(BAT)活化、白色脂肪细胞(WAT)棕色化进行非战栗产热的过程也需消耗大量葡萄糖。因此寒冷环境下的肿瘤患者势必存在BAT和肿瘤细胞之间的葡萄糖竞争,此竞争有可能使肿瘤组织处于葡萄糖饥饿状态从而抑制肿瘤生长。本文主要通过将异体肿瘤移植小鼠至于寒冷环境下对这一假设进行了验证。此为将代谢与肿瘤联系起来的又一新角度。
IF:50.500Q1 Nature, 2022-08. DOI: 10.1038/s41586-022-05030-3 PMID: 35922508
Abstract:
Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis. … >>>
Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes. However, the functional effects of the global metabolic changes associated with BAT activation on tumour growth are unclear. Here we show that exposure of tumour-bearing mice to cold conditions markedly inhibits the growth of various types of solid tumours, including clinically untreatable cancers such as pancreatic cancers. Mechanistically, cold-induced BAT activation substantially decreases blood glucose and impedes the glycolysis-based metabolism in cancer cells. The removal of BAT and feeding on a high-glucose diet under cold exposure restore tumour growth, and genetic deletion of Ucp1-the key mediator for BAT-thermogenesis-ablates the cold-triggered anticancer effect. In a pilot human study, mild cold exposure activates a substantial amount of BAT in both healthy humans and a patient with cancer with mitigated glucose uptake in the tumour tissue. These findings provide a previously undescribed concept and paradigm for cancer therapy that uses a simple and effective approach. We anticipate that cold exposure and activation of BAT through any other approach, such as drugs and devices either alone or in combination with other anticancer therapeutics, will provide a general approach for the effective treatment of various cancers. <<<
翻译
43.
徐炳祥 (2022-07-27 21:51):
#paper International Conference on Learning Representations, 2020, Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. 对具有高阶连接的超图进行图表示学习是提取很多现实问题中有用模式的必经步骤,然而当前(2020)的超图表示学习算法均无法很好处理超边大小不一致的超图。本文作者基于自注意力思想设计了一种称为Hyper-SAGNN的图神经网络结构,很好的处理了有可变超边大小的超图网络学习问题。此网络架构首先使用一单层神经网络将输入特征映射为“静态嵌入”,然后使用Multi-heat attention结构将位于同一超边内的节点映射为“动态嵌入”,进而使用Hadamard积刻画“静态表示”和“动态表示”的相似性,结果传入一单层神经网络,最终预测超边存在的概率。模型在通用测试数据集上均有比当时通行模型更好的表现,同时在单细胞Hi-C数据的表示和细胞分类问题中也有上佳表现。2022年,他们在Nature biotechnology上发表了基于此网络结构的单细胞Hi-C数据表示方法Higashi(doi: 10.1038/s41587-021-01034-y)
IF:33.100Q1 Nature biotechnology, 2022-02. DOI: 10.1038/s41587-021-01034-y PMID: 34635838 PMCID:PMC8843812
Abstract:
Single-cell Hi-C (scHi-C) can identify cell-to-cell variability of three-dimensional (3D) chromatin organization, but the sparseness of measured interactions poses an analysis challenge. Here we report Higashi, an algorithm based on … >>>
Single-cell Hi-C (scHi-C) can identify cell-to-cell variability of three-dimensional (3D) chromatin organization, but the sparseness of measured interactions poses an analysis challenge. Here we report Higashi, an algorithm based on hypergraph representation learning that can incorporate the latent correlations among single cells to enhance overall imputation of contact maps. Higashi outperforms existing methods for embedding and imputation of scHi-C data and is able to identify multiscale 3D genome features in single cells, such as compartmentalization and TAD-like domain boundaries, allowing refined delineation of their cell-to-cell variability. Moreover, Higashi can incorporate epigenomic signals jointly profiled in the same cell into the hypergraph representation learning framework, as compared to separate analysis of two modalities, leading to improved embeddings for single-nucleus methyl-3C data. In an scHi-C dataset from human prefrontal cortex, Higashi identifies connections between 3D genome features and cell-type-specific gene regulation. Higashi can also potentially be extended to analyze single-cell multiway chromatin interactions and other multimodal single-cell omics data. <<<
翻译
回到顶部