徐炳祥 (2022-07-27 21:51):
#paper International Conference on Learning Representations, 2020, Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. 对具有高阶连接的超图进行图表示学习是提取很多现实问题中有用模式的必经步骤,然而当前(2020)的超图表示学习算法均无法很好处理超边大小不一致的超图。本文作者基于自注意力思想设计了一种称为Hyper-SAGNN的图神经网络结构,很好的处理了有可变超边大小的超图网络学习问题。此网络架构首先使用一单层神经网络将输入特征映射为“静态嵌入”,然后使用Multi-heat attention结构将位于同一超边内的节点映射为“动态嵌入”,进而使用Hadamard积刻画“静态表示”和“动态表示”的相似性,结果传入一单层神经网络,最终预测超边存在的概率。模型在通用测试数据集上均有比当时通行模型更好的表现,同时在单细胞Hi-C数据的表示和细胞分类问题中也有上佳表现。2022年,他们在Nature biotechnology上发表了基于此网络结构的单细胞Hi-C数据表示方法Higashi(doi: 10.1038/s41587-021-01034-y)
IF:33.100Q1 Nature biotechnology, 2022-02. DOI: 10.1038/s41587-021-01034-y PMID: 34635838 PMCID:PMC8843812
Multiscale and integrative single-cell Hi-C analysis with Higashi
翻译
Abstract:
Single-cell Hi-C (scHi-C) can identify cell-to-cell variability of three-dimensional (3D) chromatin organization, but the sparseness of measured interactions poses an analysis challenge. Here we report Higashi, an algorithm based on hypergraph representation learning that can incorporate the latent correlations among single cells to enhance overall imputation of contact maps. Higashi outperforms existing methods for embedding and imputation of scHi-C data and is able to identify multiscale 3D genome features in single cells, such as compartmentalization and TAD-like domain boundaries, allowing refined delineation of their cell-to-cell variability. Moreover, Higashi can incorporate epigenomic signals jointly profiled in the same cell into the hypergraph representation learning framework, as compared to separate analysis of two modalities, leading to improved embeddings for single-nucleus methyl-3C data. In an scHi-C dataset from human prefrontal cortex, Higashi identifies connections between 3D genome features and cell-type-specific gene regulation. Higashi can also potentially be extended to analyze single-cell multiway chromatin interactions and other multimodal single-cell omics data.
翻译
回到顶部