来自杂志 Journal of the American Chemical Society 的文献。
当前共找到 3 篇文献分享。
1.
惊鸿 (2024-12-01 20:18):
#paper Integrated Carbon Dioxide Capture by Amines and Conversion to Methane on Single-Atom Nickel Catalysts Pub Date : 2024-11-06 , DOI: 10.1021/jacs.4c09744 二氧化碳 (CO2) 捕获物质(即氨基甲酸酯和(氢)碳酸盐)的直接电化学还原有望从点源捕获和转化 CO2,其中绕过了对能量要求高的汽提步骤。在这里,我们描述了一类电沉积在各种电极表面上的原子分散的镍 (Ni) 催化剂,这些催化剂被证明可以直接将捕获的 CO2 转化为甲烷 (CH4)。采用 X 射线光电子能谱 (XPS) 和电子显微镜 (EM) 的详细研究表明,高度分散的 Ni 原子对于将捕获物质转化为 CH4 具有独特的活性,并且单原子 Ni 的活性是通过使用分子定义的 Ni 酞菁催化剂的对照实验证实的碳纳米管负载。比较从氢氧化物、氨、伯胺、仲胺和叔胺获得的各种捕获溶液的动力学,可以证明氨基甲酸酯而不是(氢)酸盐和/或溶解的 CO2 是产生 CH4 的主要原因。这一结论得到了捕获溶液的 13C 核磁共振 (NMR) 波谱以及比较有和没有 CO2 吹扫的反应选择性的对照实验的支持。这些发现在密度泛函理论 (DFT) 计算的帮助下得到了理解,该计算表明分散在金 (Au) 上的单原子镍 (Ni) 对氨基甲酸酯的直接还原具有活性,产生 CH4 作为主要产物。 这是氨基甲酸酯直接电化学转化为 CH4 的第一个例子,该过程的机制为综合捕获 CO2 直接转化为碳氢化合物的潜力提供了新的见解。
2.
Jarvi Coa (2023-12-28 11:25):
#paper doi:10.1021/jacs.2c04325,JACS,2022,DNA Strand-Displacement Temporal Logic Circuits 这篇文章通过时间记忆的策略,结合DNA电路链置换反应,实现逻辑与门,用n个输入可以得到附带时序信息的n!个组合,对比传统电路只能得到n个输出结果的电路,很大程度提高了可拓展性,并在研究过程中发现改进门中杂交链的错配可用于降低电路设计的复杂性,缩短特定的立足点可用于提高电路行为的鲁棒性。为以后在更复杂的DNA计算提供了可能,该作者也正在研发此此类电路与神经网路和机器学习结合的新方法。
Abstract:
Molecular circuits capable of processing temporal information are essential for complex decision making in response to both the presence and history of a molecular environment. A particular type of temporal … >>>
Molecular circuits capable of processing temporal information are essential for complex decision making in response to both the presence and history of a molecular environment. A particular type of temporal information that has been recognized to be important is the relative timing of signals. Here we demonstrate the strategy of temporal memory combined with logic computation in DNA strand-displacement circuits capable of making decisions based on specific combinations of inputs as well as their relative timing. The circuit encodes the timing information on inputs in a set of memory strands, which allows for the construction of logic gates that act on current and historical signals. We show that mismatches can be employed to reduce the complexity of circuit design and that shortening specific toeholds can be useful for improving the robustness of circuit behavior. We also show that a detailed model can provide critical insights for guiding certain aspects of experimental investigations that an abstract model cannot. We envision that the design principles explored in this study can be generalized to more complex temporal logic circuits and incorporated into other types of circuit architectures, including DNA-based neural networks, enabling the implementation of timing-dependent learning rules and opening up new opportunities for embedding intelligent behaviors into artificial molecular machines. <<<
翻译
3.
Jarvi Coa (2023-11-30 09:39):
#paper DOI : 10.1021/jacs.2c11504 Pub Date  : 2023-01-26 Self-Stacking Autocatalytic Molecular Circuit with Minimal Catalytic DNA Assembly 本文提出了一种可扩展的自组装自催化DNNA电路(AAD),它由一个简单而有效的诱导序列反应组成。该系统由一小部分DNA分子序列反应和少量复制触发组成,且反应过程中可生成能够继续催化自身的trigger。通过深层理论模拟和系统实验演示,这些重新生成的trigger效率能够达到预期目标且具有较高特异性,因此可以很容易地改进以达到更有效且具有特征的DNA电路的信号放大。基于其指数级高信号感知性和最小反应组件,这种DNA分子电路大大加快了生物医学诊断和治疗评估的进程。
Abstract:
Isothermal autocatalytic DNA circuits have been proven to be versatile and powerful biocomputing platforms by virtue of their self-sustainable and self-accelerating reaction profiles, yet they are currently constrained by their … >>>
Isothermal autocatalytic DNA circuits have been proven to be versatile and powerful biocomputing platforms by virtue of their self-sustainable and self-accelerating reaction profiles, yet they are currently constrained by their complicated designs, severe signal leakages, and unclear reaction mechanisms. Herein, we developed a simpler-yet-efficient autocatalytic assembly circuit (AAC) for highly robust bioimaging in live cells and mice. The scalable and sustainable AAC system was composed of a mere catalytic DNA assembly reaction with minimal strand complexity and, upon specific stimulation, could reproduce numerous new triggers to expedite the whole reaction. Through in-depth theoretical simulations and systematic experimental demonstrations, the catalytic efficiency of these reproduced triggers was found to play a vital role in the autocatalytic profile and thus could be facilely improved to achieve more efficient and characteristic autocatalytic signal amplification. Due to its exponentially high signal amplification and minimal reaction components, our self-stacking AAC facilitated the efficient detection of trace biomolecules with low signal leakage, thus providing great clinical diagnosis and therapeutic assessment potential. <<<
翻译
回到顶部