来自用户 负负 的文献。
当前共找到 4 篇文献分享。
1.
负负
(2023-01-31 14:43):
#paper doi: 10.1016/j.neuroimage.2016.09.046. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage.2017. 功能连接矩阵(FCS)是介于功能连接(FC)和脑网络(FCN)之间的特殊的度量指标,在基于FCS的表征学习过程中,如果直接使用线性统计学模型会忽略其中的网络连接拓扑属性,如果使用图卷积等深度学习方法也存在很多限制(例如,FCS是一个完全图,每个节点都与其他节点存在连接;直接使用全连接的话模型又会很庞大)。针对这个问题,作者提出了适用于FCS的深度学习网络——BrainNetCNN,该网络的卷积包括三个部分:
1、 E2E卷积。FCS中连接两节点的每个功能连接受到这两个节点的profile的影响,该卷积核用来学习这两个节点的profile的特征。
2、 E2N卷积。该卷积核将单个节点的profile的特征降维至单个节点的特征,类似于传统CNN中的池化过程。
3、 N2G卷积。类似于E2N,将上一步降维后的所有节点的特征进一步降维至“图”的特征,此时原始FCS已降至一维
BrainNetCNN在认知评分预测等任务取得了不错的效果,并且进一步发现了在这一过程中起到重要作用的FCS子模块,例如右额中回与右侧中央前回之间的连接对运动、认知评分预测和年龄预测过程起到了重要作用。
Abstract:
We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our …
>>>
We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
<<<
翻译
2.
负负
(2022-12-31 23:02):
#paper doi: 10.1109/ICCV.2019.00452. Dmytro Kotovenko et al., 2019, Content and Style Disentanglement for Artistic Style Transfer. 该项工作使用了一种生成对抗网络框架用来提取艺术油画作品中的内容(content)特征和风格(特征),并将这些特征应用在了艺术作品的风格迁移。除了生成对抗网络常用的损失函数之外(例如,MSE for Generator、 log(p)+log(1-q) for Discriminator),该团队在训练模型时考虑到了Triplet Loss —— 简单来说:如果存在梵高的两幅艺术作品A和B,以及莫奈的一幅作品C,那么在style encoder所编码的latent space下A应该离B更近,但离C更远,换句话说此时A样本作为一个“锚点”,编码器试图拉近B和A的距离而疏远C和A的距离;同理,Content编码器也通过这种Triplet loss的方式进行学习。虽然艺术风格迁移的问题已经提出了很长时间,但这篇文章的创新点在于,他提出的模型不仅生成了质量更高、更生动形象的作品,而且还在这一过程中学习到了不同艺术家的创作理念、创作风格,编码器学习到的“Style”这一抽象概念在latent space下是平滑的,能够较好地完成不同艺术家作品之间的风格迁移。
Abstract:
Artists rarely paint in a single style throughout their career. More often they change styles or develop variations of it. In addition, artworks in different styles and even within one …
>>>
Artists rarely paint in a single style throughout their career. More often they change styles or develop variations of it. In addition, artworks in different styles and even within one style depict real content differently: while Picasso's Blue Period displays a vase in a blueish tone but as a whole, his Cubist works deconstruct the object. To produce artistically convincing stylizations, style transfer models must be able to reflect these changes and variations. Recently many works have aimed to improve the style transfer task, but neglected to address the described observations. We present a novel approach which captures particularities of style and the variations within and separates style and content. This is achieved by introducing two novel losses: a fixpoint triplet style loss to learn subtle variations within one style or between different styles and a disentanglement loss to ensure that the stylization is not conditioned on the real input photo. In addition the paper proposes various evaluation methods to measure the importance of both losses on the validity, quality and variability of final stylizations. We provide qualitative results to demonstrate the performance of our approach.
<<<
翻译
3.
负负
(2022-11-22 13:51):
#paper https://doi.org/10.1016/j.neuroimage.2021.118423. NeuroImage, 2021, Representation learning of resting state fMRI with variational autoencoder. 这篇文章是变分自编码器(VAE)在静息态磁共振成像上进行表征学习的一次尝试。该团队使用了HCP的650个健康被试的静息态磁共振影像,利用FreeSurfer工具将单个被试的BOLD信号volume数据(仅皮层)映射至球面,之后再利用极坐标转换(用横向和纵向偏转角度描述)至二维平面,将该“二维平面激活图”输入VAE训练。主要研究结论:
1、VAE对rfMRI的重建效果显著优于PCA、GIFT等数据重建方法,但会对全脑BOLD信号造成smooth效果。在VAE的latent space上随机重采样重建数据,进一步计算出的seed-based FC或FCS都具有很高的可重复性。
2、训练集不包括fMRI的时间维度的信息,但是研究发现volume的全脑BOLD信号映射至latent space后随着时间序列推移存在某些特定的运动规律(例如主要沿着某些方向运动),这是由某些脑区(感觉运动、初级视觉、听觉等)的独特激活模式造成的。
3、t-SNE分析发现来自同一被试的volume数据聚为一类,说明VAE学习到了每个被试独特的BOLD信号激活模式,这是其他数据重建算法(PCA等)无法做到的。
4、无论是在latent space还是在reconstruction space,VAE都保留了被试间和被试内(不同session之间)的相似性。
Abstract:
Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, …
>>>
Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity. After being trained with large data from the Human Connectome Project, the model has learned to represent and generate patterns of cortical activity and connectivity using latent variables. The latent representation and its trajectory represent the spatiotemporal characteristics of rsfMRI activity. The latent variables reflect the principal gradients of the latent trajectory and drive activity changes in cortical networks. Representational geometry captured as covariance or correlation between latent variables, rather than cortical connectivity, can be used as a more reliable feature to accurately identify subjects from a large group, even if only a short period of data is available in each subject. Our results demonstrate that VAE is a valuable addition to existing tools, particularly suited for unsupervised representation learning of resting state fMRI activity.
<<<
翻译
4.
负负
(2022-10-29 19:25):
#paper Understanding the role of individual units in a deep neural network (https://doi.org/10.1073/pnas.1907375117) PNAS, 2020.
作者通过对Place365数据集上训练得到的VGG16网络的神经元激活图进行上采样观察到了深度学习神经网络中的单个神经元所学习到的概念特征,讨论了这些神经元在“场景分类器”以及生成对抗网络中的“生成器”中的作用,最后讨论了这一发现的应用前景。本项工作的主要研究发现:
1、场景分类器中较“浅”层的神经元倾向于学习到“颜色”、“材质”等抽象概念,较“深”层的神经元倾向于学习到“物体”、“零件”等具体概念。
2、部分神经元对场景识别有重要的作用,关闭这些神经元会导致场景识别能力降低,在多个场景识别任务中都发挥重要作用的神经元具有更好的可解释性。
3、GANs中生成器的神经元学习到的特征与辨别器相反,即,“浅”层的神经元倾向于学习具体概念,而较“深”层的神经元倾向于学习到抽象概念。
4、关闭或启动生成器中的部分神经元,会使生成的图片中去除或增添部分场景元素,同时生成器会根据场景的特性在合适的位置生成物体,因此可以通过操纵GANs中的神经元的激活情况来进行场景绘画。
IF:9.400Q1
Proceedings of the National Academy of Sciences of the United States of America,
2020-12-01.
DOI: 10.1073/pnas.1907375117
PMID: 32873639
Abstract:
Deep neural networks excel at finding hierarchical representations that solve complex tasks over large datasets. How can we humans understand these learned representations? In this work, we present network dissection, …
>>>
Deep neural networks excel at finding hierarchical representations that solve complex tasks over large datasets. How can we humans understand these learned representations? In this work, we present network dissection, an analytic framework to systematically identify the semantics of individual hidden units within image classification and image generation networks. First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts. We find evidence that the network has learned many object classes that play crucial roles in classifying scene classes. Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes. By analyzing changes made when small sets of units are activated or deactivated, we find that objects can be added and removed from the output scenes while adapting to the context. Finally, we apply our analytic framework to understanding adversarial attacks and to semantic image editing.
<<<
翻译