负负
(2023-01-31 14:43):
#paper doi: 10.1016/j.neuroimage.2016.09.046. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage.2017. 功能连接矩阵(FCS)是介于功能连接(FC)和脑网络(FCN)之间的特殊的度量指标,在基于FCS的表征学习过程中,如果直接使用线性统计学模型会忽略其中的网络连接拓扑属性,如果使用图卷积等深度学习方法也存在很多限制(例如,FCS是一个完全图,每个节点都与其他节点存在连接;直接使用全连接的话模型又会很庞大)。针对这个问题,作者提出了适用于FCS的深度学习网络——BrainNetCNN,该网络的卷积包括三个部分:
1、 E2E卷积。FCS中连接两节点的每个功能连接受到这两个节点的profile的影响,该卷积核用来学习这两个节点的profile的特征。
2、 E2N卷积。该卷积核将单个节点的profile的特征降维至单个节点的特征,类似于传统CNN中的池化过程。
3、 N2G卷积。类似于E2N,将上一步降维后的所有节点的特征进一步降维至“图”的特征,此时原始FCS已降至一维
BrainNetCNN在认知评分预测等任务取得了不错的效果,并且进一步发现了在这一过程中起到重要作用的FCS子模块,例如右额中回与右侧中央前回之间的连接对运动、认知评分预测和年龄预测过程起到了重要作用。
BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment
翻译
Abstract:
We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
翻译
Keywords: