来自用户 李翛然 的文献。
当前共找到 43 篇文献分享,本页显示第 41 - 43 篇。
41.
李翛然 (2022-04-28 21:30):
#paper Wohlert and Edholm (2006) J. Chem. Phys. 125: 204703 Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion 本论文提出了不同脂分子的面积,相转变温度,等各种参数的得出方法,并列举出了模拟当中的一些参数选择背后的原因。最近正在深耕细挖分子动力学,因为接下来要和量子计算进行合作了,需要充分理解目前的原理及参数选择,以便找到一个最适合用量子计算的场景。
IF:3.100Q1 The Journal of chemical physics, 2006-Nov-28. PMID: 17144719
Abstract:
It is shown that a long, near microsecond, atomistic simulation can shed some light upon the dynamical processes occurring in a lipid bilayer. The analysis focuses on reorientational dynamics of … >>>
It is shown that a long, near microsecond, atomistic simulation can shed some light upon the dynamical processes occurring in a lipid bilayer. The analysis focuses on reorientational dynamics of the chains and lateral diffusion of lipids. It is shown that the reorientational correlation functions exhibits an algebraic decay (rather than exponential) for several orders of magnitude in time. The calculated nuclear magnetic resonance relaxation rates agree with experiments for carbons at the C7 position while there are some differences for C3. Lateral diffusion can be divided into two stages. In a first stage occurring at short times, t<5 ns, the center of mass of the lipid moves due to conformational changes of the chains while the headgroup position remains relatively fixed. In this stage, the center of mass can move up to approximately 0.8 nm. The fitted short-time diffusion coefficient is D(1)=13 x 10(-7) cm(2) s(-1) On a longer time scale, the diffusion coefficient becomes D(2)=0.79 x 10(-7) cm(2) s(-1). <<<
翻译
42.
李翛然 (2022-03-31 00:44):
#paper doi: 10.1038/s41586-022-04654-9 Nature,2022 Design of protein binding proteins from target structure alone. 这篇文章我是一定要吐槽一下的!!!!上周5居然被Nature 接受了?!?!这个是我最我无法理解的,去年DeepMind投了预印本开始,我们就开始跟踪这个文章了。其中的所有方法我们已经复现并加以改进,但是团队的所有人都不认为应该被Nature接收。 原因是以下几点: 1,其原理非常简单易懂,就是利用现有的一些氨基酸序列,逐渐地解析靶点结构,然后拼出来新的氨基酸序列。 2,根据AlphaFlod将靶点结构拆解出来,找到相关的合适位置,然后通过检索的方式找到合适的小氨基酸序列(这一步也没有问题,AI生成模型也会这么做) 3,但是下一步就太扯了!因为最关键的步骤来了,就是如何评判找到和生成的氨基酸与靶点的对接亲和力?以及如何评价对接强度? 也是强化学习的关键Q函数到底是啥 他居然用了DeepMind 和华盛顿大学的历史遗留工具集:RoseTTA!!!!最最关键的评分函数居然用自己团队曾经的开源工具集!(大分子准确度也就撑死20%不到) 太不可思议了!!完全没有试验验证和支持的文章居然被Nature 主刊接收了?!?!天啊,这可和ALphaFLod开创性是比不了的,人家是引入了全新的数学工具和解决问题的思路,这文章完全是蹭出来的。 只能说Google,DeepMind 以及华盛顿大学 背后的学术公关和关系网太庞大了! 不过另一方面,只能说的是,生物学过去的发展太慢了,AI行业内卷外溢之后,真的是降维打击!
IF:50.500Q1 Nature, 2022-05. DOI: 10.1038/s41586-022-04654-9 PMID: 35332283
Abstract:
The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a … >>>
The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a challenge. Here we describe a general solution to this problem that starts with a broad exploration of the vast space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate the broad applicability of this approach through the de novo design of binding proteins to 12 diverse protein targets with different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and, following experimental optimization, bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder-target complexes, and all five closely match the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein-protein interactions, and should guide improvements of both. Our approach enables the targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications. <<<
翻译
43.
李翛然 (2022-02-27 09:48):
#paper doi 10.1002 : Image2SMILES: Transformer-Based Molecular Optical Recognition Engine (2022) https://doi.org/10.1002/cmtd.202100069 这篇文章主要讲述了如何利用transformer 模型将文献中的化学分子式识别并转换为可以进一步分析用的smiles结构。这项技术算是一个比较“有则更好,无则也能抗的过去”的模型,因为需要进行smiles识别的分子,其肯定基本上都会被关注到论文和结构价值。但是,关注到之后,相关有经验的化学专家看一眼图像就知道里面的问题,和结构细节。 那至于如何找到有价值的化学结构,其实又是NLP读取论文的事情了。所以这个技术我觉得有点鸡肋,北京的望石科技就是干这个的。
回到顶部