来自杂志 arXiv 的文献。
当前共找到 134 篇文献分享,本页显示第 121 - 134 篇。
121.
张德祥 (2022-07-19 18:49):
#paper https://doi.org/10.48550/arXiv.2207.04630 On the Principles of Parsimony and Self-Consistency for the Emergence of Intelligence 马毅的这篇论文已经有公众号报道过了,马毅结合自己的之前的两个工作,LDR 数据压缩及闭环生成模型的深度网络,将压缩和闭环生成提炼为简约和自洽的智能原则,本论文继续提出了更多通用性的想法,并扩展到3d视觉及强化学习并预测对神经科学及高级智能的影响。
Abstract:
Ten years into the revival of deep networks and artificial intelligence, we propose a theoretical framework that sheds light on understanding deep networks within a bigger picture of Intelligence in … >>>
Ten years into the revival of deep networks and artificial intelligence, we propose a theoretical framework that sheds light on understanding deep networks within a bigger picture of Intelligence in general. We introduce two fundamental principles, Parsimony and Self-consistency, that address two fundamental questions regarding Intelligence: what to learn and how to learn, respectively. We believe the two principles are the cornerstones for the emergence of Intelligence, artificial or natural. While these two principles have rich classical roots, we argue that they can be stated anew in entirely measurable and computable ways. More specifically, the two principles lead to an effective and efficient computational framework, compressive closed-loop transcription, that unifies and explains the evolution of modern deep networks and many artificial intelligence practices. While we mainly use modeling of visual data as an example, we believe the two principles will unify understanding of broad families of autonomous intelligent systems and provide a framework for understanding the brain. <<<
翻译
122.
王昊 (2022-06-30 17:08):
#paper doi:https://doi.org/10.48550/arXiv.2201.12086 BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation. arXiv:2201.12086 [cs]. BLIP 是一个统一的视觉语言预训练(vision-language pre-training, VLP)框架,从有噪声的图像文本对中学习。 BLIP 通过自展标注(bootstrapping the captions),可以有效地利用带有噪声的 web 数据,其中标注器(captioner)生成标注,过滤器(filter)去除有噪声的标注。本模型属于开源的视觉语言模型中性能较好的(2022年6月),可以直接docker部署,应用于多个视觉语言下游任务。我们尝试了以后可以一定程度上实现zero-shot的功能。在VQA 2.0数据集上性能较好。思考下一步将其作为预训练模型,微调后应用于落地的其它下游任务。
Abstract:
Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been … >>>
Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to video-language tasks in a zero-shot manner. Code, models, and datasets are released at this https URL. <<<
翻译
123.
Ricardo (2022-05-30 23:39):
#paper https://arxiv.org/abs/2102.04159v3 Deep Residual Learning in Spiking Neural Networks. 2021年发表于NIPS。基于人工神经网络的现代深度学习技术在各个领域上都取得了相当大的进展,但是由于其数学上的黑箱不可解释性、功耗高的问题,有一部分研究开始关注于基于生物脉冲神经元的脉冲神经网络上(SNN)。SNN有较高的生物解释性、事件驱动性和低功耗等特点,被视为人工神经网络的潜在竞争对手。但是SNN仍然面临许多理论和工程问题,在一些复杂任务上的表现仍然比ANN差。基于残差学习在ANN上取得的巨大成功,自然会去研究如何利用残差学习去训练SNN。之前的一些研究仿照ANN中标准的残差模块,简单地将relu激活函数替换成脉冲神经元,但是这样的网络伴随着深度的增加会出现退化问题,从而难以实现残差学习。在这篇论文里,作者证明了之前在SNN上的残差学习方法会导致梯度爆炸/消失问题,从而难以实现identity mapping。因此,他们提出了一个方法用来解决这么一个梯度爆炸/消失问题。实验结果也挺漂亮的,在多个数据集上都比之前的snn方法更好,当然不如ann的结果啦。并且能够通过加深网络深度提高snn的performance。而且,也首次实现了能够直接训练超过100层的snn。
Abstract:
Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-based approaches due to discrete binary activation and complex spatial-temporal dynamics. Considering the huge success of ResNet in deep learning, it … >>>
Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-based approaches due to discrete binary activation and complex spatial-temporal dynamics. Considering the huge success of ResNet in deep learning, it would be natural to train deep SNNs with residual learning. Previous Spiking ResNet mimics the standard residual block in ANNs and simply replaces ReLU activation layers with spiking neurons, which suffers the degradation problem and can hardly implement residual learning. In this paper, we propose the spike-element-wise (SEW) ResNet to realize residual learning in deep SNNs. We prove that the SEW ResNet can easily implement identity mapping and overcome the vanishing/exploding gradient problems of Spiking ResNet. We evaluate our SEW ResNet on ImageNet, DVS Gesture, and CIFAR10-DVS datasets, and show that SEW ResNet outperforms the state-of-the-art directly trained SNNs in both accuracy and time-steps. Moreover, SEW ResNet can achieve higher performance by simply adding more layers, providing a simple method to train deep SNNs. To our best knowledge, this is the first time that directly training deep SNNs with more than 100 layers becomes possible. <<<
翻译
124.
张浩彬 (2022-05-30 19:14):
#paper Wen, Ruofeng, et al. A Multi-Horizon Quantile Recurrent Forecaster. #paper Wen, Ruofeng, et al. A Multi-Horizon Quantile Recurrent Forecaster. DOI: 10.48550/arXiv.1711.11053 MQRNN,又是亚马逊的时序论文。之前看了DeepAR,可以对多个序列进行建模,并且也有很好的鲁棒性。但是相比之前的prophet和DeepAR,MQRNN走了另外一个路子,基于分位数的预测。这样的一个好处是,它认为我们不再去预测序列在t时刻的分布,而是预测t时刻的分位数,走了分位数回归的路子。另外,相比于DeepAR,MQRNN使用了水平多无预测,即不再采用迭代方式预测多步,而是一次性产生多步预测。按照论文的说法,这样的好处是提高了预测效率(毕竟可以并行),减少了累积误差(个人觉得这点,见仁见智,本质其实一样)
Abstract:
We propose a framework for general probabilistic multi-step time series regression. Specifically, we exploit the expressiveness and temporal nature of Sequence-to-Sequence Neural Networks (e.g. recurrent and convolutional structures), the nonparametric … >>>
We propose a framework for general probabilistic multi-step time series regression. Specifically, we exploit the expressiveness and temporal nature of Sequence-to-Sequence Neural Networks (e.g. recurrent and convolutional structures), the nonparametric nature of Quantile Regression and the efficiency of Direct Multi-Horizon Forecasting. A new training scheme, *forking-sequences*, is designed for sequential nets to boost stability and performance. We show that the approach accommodates both temporal and static covariates, learning across multiple related series, shifting seasonality, future planned event spikes and cold-starts in real life large-scale forecasting. The performance of the framework is demonstrated in an application to predict the future demand of items sold on this http URL, and in a public probabilistic forecasting competition to predict electricity price and load. <<<
翻译
125.
尹志 (2022-05-30 13:31):
#paper https://doi.org/10.48550/arXiv.1907.05600 Generative Modeling by Estimating Gradients of the Data Distribution NeurIPS 2019 (Oral) (2019). 继续生成模型啊,这篇文章作者提出了一种基于评分的生成模型。我们知道现在主流的生成模型基本可以分为likelihood-based和类似GAN那样通过对抗而不计算具体的概率密度函数的隐式模型。前者的代表如VAE、normalizing flow等。而本文的模型也属于这个范畴。在这类模型中,由于需要对条件概率进行积分,归一化常数Z的计算非常困难,因此派生出各类解决方法。本文其核心思想是通过对概率密度的梯度进行建模估计(准确来说是对log概率密度函数)。这里的log概率密度函数的梯度被定义为score function,而作者也是通过评分匹配(score matching)进行估计的。在生成模型建立之后,进而通过Langevin动力学进行采样,即生成样本。部分细节还在推,代码也在复现中,感觉是一类比较有效的生成模型,生成图片的质量较高,改进版本已经可以和GAN的生成质量一较高下。但目前最大的问题是废卡,非常废卡,希望后面自己可以在如何提高其训练效率及抽样效率上做一些工作。
Abstract:
We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard … >>>
We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments. <<<
翻译
126.
张德祥 (2022-05-02 09:28):
#paper https://doi.org/10.48550/arXiv.2001.04385 Universal Differential Equations for Scientific Machine Learnin 我们提供一流的工具来求解微分方程 我们提供用于推导和拟合科学模型的工具 我们提供高级域特定建模工具,使科学建模更易于访问 我们提供科学机器学习中最新算法的高级实现 我们为所有常见科学编程语言的用户提供使用我们工具的能力 我们提供用于研究科学机器学习方法的工具 我们的目标是什么 我们构建的一切都与自动微分兼容 性能被视为优先事项,性能问题被视为错误 我们的软件包使用科学模拟和机器学习工具进行了常规和稳健的测试 我们紧跟计算硬件的进步,以确保与最新的高性能计算工具兼容。 https://mp.weixin.qq.com/s/jR_2A1IqqZ1J8idmXb9Tpg
Abstract:
In the context of science, the well-known adage "a picture is worth a thousand words" might well be "a model is worth a thousand datasets." In this manuscript we introduce … >>>
In the context of science, the well-known adage "a picture is worth a thousand words" might well be "a model is worth a thousand datasets." In this manuscript we introduce the SciML software ecosystem as a tool for mixing the information of physical laws and scientific models with data-driven machine learning approaches. We describe a mathematical object, which we denote universal differential equations (UDEs), as the unifying framework connecting the ecosystem. We show how a wide variety of applications, from automatically discovering biological mechanisms to solving high-dimensional Hamilton-Jacobi-Bellman equations, can be phrased and efficiently handled through the UDE formalism and its tooling. We demonstrate the generality of the software tooling to handle stochasticity, delays, and implicit constraints. This funnels the wide variety of SciML applications into a core set of training mechanisms which are highly optimized, stabilized for stiff equations, and compatible with distributed parallelism and GPU accelerators. <<<
翻译
127.
张德祥 (2022-05-01 09:56):
#paper https://doi.org/10.48550/arXiv.2204.07953 Learning with Signatures mnist等识别100% ,这个结果一下子炸了锅了,reddit质疑诋毁一片, https://github.com/decurtoydiaz/learning_with_signatures/issues 的讨论也很激动,但是作者开放了代码,回应了质疑,https://www.kaggle.com/code/mlsnatcher/replicate-results-signature-model/notebook也有可以直接运行的代码,在issue5讨论中作者也承认了有一个不足,除了不认可,是否可以深入了解一下这个技术具体使用的方法?论文不用深度学习,使用了:The signature was first defined for smooth paths by Chen in the 60s (Chen, 1957; 1958; 1977) and was rediscovered in the 90s in the context of rough path theory;这个数学很难,想真正搞懂这个论文的底细很难,挑战很大,搞懂了也是本事,如果技术真的ok,那也是领先一步。
Abstract:
In this work we investigate the use of the Signature Transform in the context of Learning. Under this assumption, we advance a supervised framework that potentially provides state-of-the-art classification accuracy … >>>
In this work we investigate the use of the Signature Transform in the context of Learning. Under this assumption, we advance a supervised framework that potentially provides state-of-the-art classification accuracy with the use of few labels without the need of credit assignment and with minimal or no overfitting. We leverage tools from harmonic analysis by the use of the signature and log-signature, and use as a score function RMSE and MAE Signature and log-signature. We develop a closed-form equation to compute probably good optimal scale factors, as well as the formulation to obtain them by optimization. Techniques of Signal Processing are addressed to further characterize the problem. Classification is performed at the CPU level orders of magnitude faster than other methods. We report results on AFHQ, MNIST and CIFAR10, achieving 100% accuracy on all tasks assuming we can determine at test time which probably good optimal scale factor to use for each category. <<<
翻译
128.
Ricardo (2022-04-30 20:39):
#paper https://doi.org/10.48550/arXiv.1806.09055 DARTS: differentiable architecture search ICLR(2019) Neural Architectural Search (NAS) 这个问题是出了名的消耗算力,动不动就需要消耗上千个gpu hour,基本也只能在顶级的研究机构做这类研究。这篇文章没有使用类似于进化算法或者强化学习这样的方法在离散和不可微的空间中搜索网络架构, 而是通过对神经网络的架构表征进行松弛,将NAS问题转化为一个可微分的形式,从而能够使用梯度下降法在连续空间中搜索神经网络架构。作者将这个问题建模成一个bilevel的优化问题,然后提出了一个类似于EM算法的优化方法,通过交替优化模型架构参数\alpha和模型权重w来找到较优的模型架构\alpha 。由于优化过程中涉及二阶导的计算,作者进一步对二阶导的计算做了松弛,将其转化为形式为一阶导的估计,从而进一步降低了方法的复杂度。结果也都很漂亮,相比于之前那些动辄需要上千个gpu day的计算量,darts方法只需要几个gpu day的计算,而且也能达到差不多的效果。
Abstract:
This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and … >>>
This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and non-differentiable search space, our method is based on the continuous relaxation of the architecture representation, allowing efficient search of the architecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques. Our implementation has been made publicly available to facilitate further research on efficient architecture search algorithms. <<<
翻译
129.
尹志 (2022-04-28 22:10):
#paper https://doi.org/10.48550/arXiv.1503.03585 Deep Unsupervised Learning using Nonequilibrium Thermodynamics ICML (2015). 这是一篇还没完全看懂的论文,但是非常有意思。说起这篇文章的扩散模型大家一不定熟悉,但是提到最近大火的openai的工作dall-e 2,大家可能会更熟悉一点。对,Dall-E 2最早的启发就是这篇文章。本文受非平衡热力学的启发,设计了一个称之为扩散模型(diffusion model)的生成模型。我们知道,在机器学习中,对一堆数据的分布进行估计是一个极具挑战的事情。特别是要兼顾模型的灵活性(flexible)和过程的可解性(tractable)。如果把建模隐变量z到观测量x的映射作为任务,那么扩散模型的想法是, 假设整个映射是一个马尔科夫链(MC),然后数据的初始状态是由一步步不断添加高斯噪声,最终获得某种最终形态,那么反过来,可以将去噪的过程看做是生成的过程。我们针对这个MC过程进行训练,那么逆过程则可以作为生成模型生成符合分布的数据。是的,很像VAE。考虑到这类生成模型通过不断的改进,已经达到Dall-E 2的效果,值得我们深入理解背后的机制,以及是否可以在数据合成上产生更好的效果。
Abstract:
A central problem in machine learning involves modeling complex data-sets using highly flexible families of probability distributions in which learning, sampling, inference, and evaluation are still analytically or computationally tractable. … >>>
A central problem in machine learning involves modeling complex data-sets using highly flexible families of probability distributions in which learning, sampling, inference, and evaluation are still analytically or computationally tractable. Here, we develop an approach that simultaneously achieves both flexibility and tractability. The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable generative model of the data. This approach allows us to rapidly learn, sample from, and evaluate probabilities in deep generative models with thousands of layers or time steps, as well as to compute conditional and posterior probabilities under the learned model. We additionally release an open source reference implementation of the algorithm. <<<
翻译
130.
张德祥 (2022-03-24 23:05):
#paper https://doi.org/10.48550/arXiv.2112.14045 Learning from What’s Right and Learning from What’s Wrong 最新的贝叶斯推理论文,详见推文:https://mp.weixin.qq.com/s/OEcXvyqxYNTCbTK7KUrEjw
Abstract:
The concept of updating (or conditioning or revising) a probability distribution is fundamental in (machine) learning and in predictive coding theory. The two main approaches for doing so are called … >>>
The concept of updating (or conditioning or revising) a probability distribution is fundamental in (machine) learning and in predictive coding theory. The two main approaches for doing so are called Pearl's rule and Jeffrey's rule. Here we make, for the first time, mathematically precise what distinguishes them: Pearl's rule increases validity (expected value) and Jeffrey's rule decreases (Kullback-Leibler) divergence. This forms an instance of a more general distinction between learning from what's right and learning from what's wrong. The difference between these two approaches is illustrated in a mock cognitive scenario. <<<
翻译
131.
Vincent (2022-02-28 15:50):
#paper What are the most important statistical ideas of the past 50 years? #Link: https://arxiv.org/abs/2012.00174 导读:作者Andrew Gelman是哥伦比亚大学统计系的教授,也是经济学人等杂志的资深统计顾问,2020年当选美国科学院院士。2021年他在arxiv上发布了这篇备受统计学家关注的文章。文中总结了过去50年来统计学领域最为重要的八大思想(he thinks) 1. 因果推断;2. bootstrap和基于模拟的推断;3.超参数模型和正则化;4.层次结构模型;5.通用计算算法;6.自适应判定分析;7.鲁棒性推断;8.探索性数据分析。个人认为第一点和第三点尤其得当。第三点基本可以囊括很多machine leanring的算法。而第一点直接影响着人们的决策和认知,多数时候我们总把相关关系误认为因果(在社会科学领域尤甚),大家如果有幸观察到网上的各类争论,不妨从这点来审视他们在论证中有没有犯这种常识性的错误。
132.
物品师 (2022-02-21 05:03):
#paper doi.10.48550 [arxiv.2111.08575] 标题GRI: General Reinforced Imitation and its Application to Vision-Based Autonomous Driving作者Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, Fabien Moutarde领域Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV).链接https://arxiv.org/abs/2111.08575引用arXiv:2111.08575 [cos.RO](or arXiv:2111.08575v1 [cs.RO] for this version) https://doi.org/10.48550/arXiv.2111.08575摘要:深度强化学习 (DRL) 已被证明对自动驾驶和机器人等多种复杂决策应用程序有效。 然而,众所周知,DRL 因其高样本复杂性和缺乏稳定性而受到限制。 先验知识,例如 作为专家演示,通常可用,但难以利用来缓解这些问题。 在本文中,我们提出了通用强化模仿 (GRI),这是一种结合了探索和专家数据的好处的新方法,并且可以直接在任何非策略 RL 算法上实现。 我们做了一个简化的假设:专家演示可以被视为完美的数据,其基础策略会获得持续的高回报。 基于这个假设,GRI 引入了离线演示代理的概念。 该代理发送专家数据,这些数据与来自在线 RL 探索代理的经验同时处理且无法区分。 我们表明,我们的方法可以在城市环境中对基于视觉的自动驾驶进行重大改进。 我们进一步验证了具有不同离策略 RL 算法的 Mujoco 连续控制任务的 GRI 方法。 我们的方法在 CARLA 排行榜上排名第一,并且比之前最先进的 World on Rails 的性能高出 17%。
133.
刑无刀 (2022-02-20 22:57):
#paper arXiv:2010.06002 Thinking Fast and Slow in AI 这篇论文主要是为AI下一步发展提出了一个研究方向,灵感和思路来自认知科学领域著名的《思考,快与慢》,后者提出人的认知决策有两个系统,系统1是快速反应,下意识的感知层,系统2是需要经过理性计算、推理,综合更多信息后作出反应的慢系统。作者提出,AI应该是综合“快慢”两者才能更接近的通用智能,系统1对应感知算法,通过深度学习等方法,已经取得突破,而用于推理、计算、决策的慢系统,则需要借助符号系统等方法,有一定的时序性,两者结合,才能更接近真正能够“思考”的智能。基于上述设想,作者提出了10个可能的研究问题,简单列举几个如下: 1. 我们能够清晰地区分AI中的系统1和系统2的能力吗?他们各自的特征是什么?就只有这两类能力吗?还是会有更多能力? 2. 系统2的顺序性(表现为无法并行)是一个bug还是一个feature?我们 应该诉诸机器给系统2发展多线程推理能力吗?如果是这样,结合了机器强大的计算能力,是否能够补偿AI某些方面的缺陷? 3. 综合了系统1和系统2(机器学习和符号逻辑)的AI,用什么评价指标来度量其表现?这些指标应该因任务不同和组合方法不同而不同吗?
Abstract: No abstract available.
134.
数据简化社区(秦陇纪) (2022-02-13 10:29):
#paper ArXiv:2202.02435v1 [cs.LG] On Neural Differential Equations. 牛津大学数学研究所帕特里克·基格尔(Patrick Kidger)的博士学位论文The webpage at https://arxiv.org/pdf/2202.02435v1.pdf,参考链接https://www.maths.ox.ac.uk/people/patrick.kidger,https://www.reddit.com/r/MachineLearning/comments/snmtzn/r_phd_thesis_on_neural_differential_equations/。 一、这篇231页的博士论文专门探讨神经微分方程(neural ODE),主要内容包括如下:①神经常微分方程(neural ordinary diffeqs):用于学习物理系统,作为离散架构的连续时间限制,包括对可表达性的理论结果;②神经受控微分方程(neural controlled diffeqs):用于建模时间序列函数、处理不规则数据;③神经随机微分方程(neural stochastic diffeqs):用于从复杂的高维随机动态中采样;④数值法(numerical methods):一类新的可逆微分方程求解器或布朗重建(Brownian reconstruction)问题。 二、论文中归纳神经微分方程(neural differential equation, NDEs)的 4 个主要应用为:①物理建模;②时间序列;③生成式建模;④一种开发深度学习模型的策略:取适当的微分方程并将其离散化。 三、用于神经微分方程的数值求解和训练的软件包目前已经进行了标准化,文中提供了几种选择供读者使用:1.在JAX生态系统 [Bra+18] 的Diffrax, https://github.com/patrick-kidger/diffrax;2.在PyTorch生态系统 [Pas+19] 中的torchdiffeq、torchcde 和 torchsde 系列库, https://github.com/rtqichen/torchdiffeq,https://github.com/patrick-kidger/torchcde ,https://github.com/google-research/torchsde ,https://github.com/DiffEqML/torchdyn ;3.在Julia [Bez+17] 生态系统中的 DifferentialEquations.jl, https://github.com/SciML/DifferentialEquations.jl 。
Abstract: No abstract available.
回到顶部