来自杂志 arXiv 的文献。
当前共找到 125 篇文献分享,本页显示第 121 - 125 篇。
121.
张德祥
(2022-03-24 23:05):
#paper https://doi.org/10.48550/arXiv.2112.14045 Learning from What’s Right and Learning from What’s Wrong 最新的贝叶斯推理论文,详见推文:https://mp.weixin.qq.com/s/OEcXvyqxYNTCbTK7KUrEjw
arXiv,
2021.
DOI: 10.48550/arXiv.2112.14045
Abstract:
The concept of updating (or conditioning or revising) a probability distribution is fundamental in (machine) learning and in predictive coding theory. The two main approaches for doing so are called …
>>>
The concept of updating (or conditioning or revising) a probability distribution is fundamental in (machine) learning and in predictive coding theory. The two main approaches for doing so are called Pearl's rule and Jeffrey's rule. Here we make, for the first time, mathematically precise what distinguishes them: Pearl's rule increases validity (expected value) and Jeffrey's rule decreases (Kullback-Leibler) divergence. This forms an instance of a more general distinction between learning from what's right and learning from what's wrong. The difference between these two approaches is illustrated in a mock cognitive scenario.
<<<
翻译
122.
Vincent
(2022-02-28 15:50):
#paper What are the most important statistical ideas of the past 50 years?
#Link: https://arxiv.org/abs/2012.00174
导读:作者Andrew Gelman是哥伦比亚大学统计系的教授,也是经济学人等杂志的资深统计顾问,2020年当选美国科学院院士。2021年他在arxiv上发布了这篇备受统计学家关注的文章。文中总结了过去50年来统计学领域最为重要的八大思想(he thinks) 1. 因果推断;2. bootstrap和基于模拟的推断;3.超参数模型和正则化;4.层次结构模型;5.通用计算算法;6.自适应判定分析;7.鲁棒性推断;8.探索性数据分析。个人认为第一点和第三点尤其得当。第三点基本可以囊括很多machine leanring的算法。而第一点直接影响着人们的决策和认知,多数时候我们总把相关关系误认为因果(在社会科学领域尤甚),大家如果有幸观察到网上的各类争论,不妨从这点来审视他们在论证中有没有犯这种常识性的错误。
arXiv,
2020.
DOI: 10.48550/arXiv.2012.00174
Abstract:
No abstract available.
123.
物品师
(2022-02-21 05:03):
#paper doi.10.48550 [arxiv.2111.08575] 标题GRI: General Reinforced Imitation and its Application to Vision-Based Autonomous Driving作者Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, Fabien Moutarde领域Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV).链接https://arxiv.org/abs/2111.08575引用arXiv:2111.08575 [cos.RO](or arXiv:2111.08575v1 [cs.RO] for this version) https://doi.org/10.48550/arXiv.2111.08575摘要:深度强化学习 (DRL) 已被证明对自动驾驶和机器人等多种复杂决策应用程序有效。 然而,众所周知,DRL 因其高样本复杂性和缺乏稳定性而受到限制。 先验知识,例如 作为专家演示,通常可用,但难以利用来缓解这些问题。 在本文中,我们提出了通用强化模仿 (GRI),这是一种结合了探索和专家数据的好处的新方法,并且可以直接在任何非策略 RL 算法上实现。 我们做了一个简化的假设:专家演示可以被视为完美的数据,其基础策略会获得持续的高回报。 基于这个假设,GRI 引入了离线演示代理的概念。 该代理发送专家数据,这些数据与来自在线 RL 探索代理的经验同时处理且无法区分。 我们表明,我们的方法可以在城市环境中对基于视觉的自动驾驶进行重大改进。 我们进一步验证了具有不同离策略 RL 算法的 Mujoco 连续控制任务的 GRI 方法。 我们的方法在 CARLA 排行榜上排名第一,并且比之前最先进的 World on Rails 的性能高出 17%。
arXiv,
2021.
DOI: 10.48550/arXiv.2111.08575
Focus to learn more
Abstract:
No abstract available.
124.
刑无刀
(2022-02-20 22:57):
#paper arXiv:2010.06002 Thinking Fast and Slow in AI
这篇论文主要是为AI下一步发展提出了一个研究方向,灵感和思路来自认知科学领域著名的《思考,快与慢》,后者提出人的认知决策有两个系统,系统1是快速反应,下意识的感知层,系统2是需要经过理性计算、推理,综合更多信息后作出反应的慢系统。作者提出,AI应该是综合“快慢”两者才能更接近的通用智能,系统1对应感知算法,通过深度学习等方法,已经取得突破,而用于推理、计算、决策的慢系统,则需要借助符号系统等方法,有一定的时序性,两者结合,才能更接近真正能够“思考”的智能。基于上述设想,作者提出了10个可能的研究问题,简单列举几个如下:
1. 我们能够清晰地区分AI中的系统1和系统2的能力吗?他们各自的特征是什么?就只有这两类能力吗?还是会有更多能力?
2. 系统2的顺序性(表现为无法并行)是一个bug还是一个feature?我们
应该诉诸机器给系统2发展多线程推理能力吗?如果是这样,结合了机器强大的计算能力,是否能够补偿AI某些方面的缺陷?
3. 综合了系统1和系统2(机器学习和符号逻辑)的AI,用什么评价指标来度量其表现?这些指标应该因任务不同和组合方法不同而不同吗?
arXiv,
2020.
DOI: 10.48550/arXiv.2010.06002
Abstract:
No abstract available.
125.
数据简化社区(秦陇纪)
(2022-02-13 10:29):
#paper ArXiv:2202.02435v1 [cs.LG] On Neural Differential Equations. 牛津大学数学研究所帕特里克·基格尔(Patrick Kidger)的博士学位论文The webpage at https://arxiv.org/pdf/2202.02435v1.pdf,参考链接https://www.maths.ox.ac.uk/people/patrick.kidger,https://www.reddit.com/r/MachineLearning/comments/snmtzn/r_phd_thesis_on_neural_differential_equations/。
一、这篇231页的博士论文专门探讨神经微分方程(neural ODE),主要内容包括如下:①神经常微分方程(neural ordinary diffeqs):用于学习物理系统,作为离散架构的连续时间限制,包括对可表达性的理论结果;②神经受控微分方程(neural controlled diffeqs):用于建模时间序列函数、处理不规则数据;③神经随机微分方程(neural stochastic diffeqs):用于从复杂的高维随机动态中采样;④数值法(numerical methods):一类新的可逆微分方程求解器或布朗重建(Brownian reconstruction)问题。
二、论文中归纳神经微分方程(neural differential equation, NDEs)的 4 个主要应用为:①物理建模;②时间序列;③生成式建模;④一种开发深度学习模型的策略:取适当的微分方程并将其离散化。
三、用于神经微分方程的数值求解和训练的软件包目前已经进行了标准化,文中提供了几种选择供读者使用:1.在JAX生态系统 [Bra+18] 的Diffrax, https://github.com/patrick-kidger/diffrax;2.在PyTorch生态系统 [Pas+19] 中的torchdiffeq、torchcde 和 torchsde 系列库, https://github.com/rtqichen/torchdiffeq,https://github.com/patrick-kidger/torchcde ,https://github.com/google-research/torchsde ,https://github.com/DiffEqML/torchdyn ;3.在Julia [Bez+17] 生态系统中的 DifferentialEquations.jl, https://github.com/SciML/DifferentialEquations.jl 。
arXiv,
2022.
DOI: 10.48550/arXiv.2202.02435v1
Abstract:
No abstract available.