来自杂志 Nature human behaviour 的文献。
当前共找到 2 篇文献分享。
1.
林海onrush (2023-12-01 00:00):
#paper, https://doi.org/10.1038/s41562-019-0804-2,Quantum reinforcement learning during human decision-making,这篇nature子刊很有意思,探讨了量子强化学习(QRL)在人类决策中的应用。QRL在人类决策中的新颖应用:该研究是首次将QRL应用于人类决策的实证研究。QRL在计算机模拟中表现出色,但此研究首次在人类决策环境中对其进行了特殊测试。研究利用了参与者在执行爱荷华赌博任务时的行为数据和功能性磁共振成像(fMRI)数据,将2个QRL模型与12个已建立的CRL模型进行了对比。研究者开发了两种新的QRL模型:量子叠加状态学习(QSL)和量子叠加状态加持续性(QSPP)。这些模型的表现在某些方面优于最好的CRL模型。这一发现在包括健康个体和吸烟者在内的不同受试者群体中得到了确认,表明这些模型的稳健性和普遍适用性。量子类过程的神经表征:该研究的一个重要创新是确定了表示量子类过程的神经基质。例如,QSPP模型显示了在大脑中如何表征量子距离和转换幅度——QRL的关键概念。这一发现弥合了认知量子模型和神经科学之间的差距,为决策中的量子类过程提供了神经生物学基础。对于决策中的不确定性理解,论文还探讨了决策中不确定性的角色。通过将QSPP模型与CRL模型(VPPDecayTIC)进行比较,突出了大脑如何不同地处理由不稳定的外部环境影响的内部状态不确定性。这一研究方面强调了QRL模型在提供对决策认知过程更细微洞察方面的潜力。​​
IF:21.400Q1 Nature human behaviour, 2020-03. DOI: 10.1038/s41562-019-0804-2 PMID: 31959921
Abstract:
Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on … >>>
Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. <<<
翻译
2.
DeDe宝 (2022-11-28 23:47):
#paper https://doi.org/10.1038/s41562-019-0811-3 Nature Human Behaviour volume 4, pages397–411 (2020) Multimodal mapping of the face connectome 面部处理支持人脸识别和情感理解的能力,这依赖于脑区网络分布,但目前研究者对脑区的相互作用知之甚少。本篇文章结合解剖、功能连接测量与行为分析,建立了面部连接体的全脑模型,探明了模型的关键特征,如脑网络拓扑结构和纤维束构成。研究者提出了具有三个核心流的神经认知模型,面部处理流程沿着这些核心流并行或交互处理。虽然长程神经纤维束是很重要,但面部脑网络由短程神经纤维束主导,最后,研究者提供了面部处理流程右偏侧化是由于半球内和半球间连接不平衡的证据。总之,面部脑网络依赖于高度结构化的神经纤维束之间的动态链接,使支持行为和认知的面部处理流程成为可能。
IF:21.400Q1 Nature human behaviour, 2020-04. DOI: 10.1038/s41562-019-0811-3 PMID: 31988441
Abstract:
Face processing supports our ability to recognize friend from foe, form tribes and understand the emotional implications of changes in facial musculature. This skill relies on a distributed network of … >>>
Face processing supports our ability to recognize friend from foe, form tribes and understand the emotional implications of changes in facial musculature. This skill relies on a distributed network of brain regions, but how these regions interact is poorly understood. Here we integrate anatomical and functional connectivity measurements with behavioural assays to create a global model of the face connectome. We dissect key features, such as the network topology and fibre composition. We propose a neurocognitive model with three core streams; face processing along these streams occurs in a parallel and reciprocal manner. Although long-range fibre paths are important, the face network is dominated by short-range fibres. Finally, we provide evidence that the well-known right lateralization of face processing arises from imbalanced intra- and interhemispheric connections. In summary, the face network relies on dynamic communication across highly structured fibre tracts, enabling coherent face processing that underpins behaviour and cognition. <<<
翻译
回到顶部