李翛然
(2023-04-28 17:37):
#paper De novo design of protein interactions with lerned surface pingerprints doi: 10.1038/s41586-023-05993-x.
文章的主要思路是分为三个阶段:(1)使用MaSIF-site预测目标蛋白质表面上具有高结合倾向的埋藏界面位点;(2)使用MaSIF-seed基于表面指纹寻找互补的结构基元(结合种子),这些基元具有与目标位点相匹配的特征;(3)将结合种子移植到蛋白质骨架上,使用Rosetta优化设计界面,增加稳定性和额外的接触。
文章的主要结论是,作者利用这种表面为中心的方法成功地设计并实验验证了针对四种蛋白质靶标的从头结合剂:SARS-CoV-2刺突蛋白、PD-1、PD-L1和CTLA-4。其中一些设计经过实验优化,而另一些则完全在计算机上生成,达到了纳摩尔级别的亲和力。结构和突变分析显示预测非常准确。总体而言,作者的方法能够捕捉分子识别的物理和化学决定因素,为从头设计蛋白质相互作用以及更广泛地设计具有功能的人工蛋白质提供了一种方法.
以上是通过chat GPT总结的。 不过我读完的感受就是,我并不认为这篇文章的水平是 nature 正刊的水平, masif 的算法在蛋白质结构对比上确实有用,但是背后有个深层次的问题这篇文章没有谈到,即目前来说,对于已知蛋白设计一个有效的配体蛋白,算法已经比较丰富了。并且最近2年发的文章已经有很好的实验结果来验证。 但是对于结构全新,或者说没有任何可用配体的蛋白来说,这个挑战非常巨大,文章并没有提到这种问题出现后的解决思路,而且甚至算法的创新比不上前段时间的 baker 的 rf diffusion. 总之吧 现在真的是蓝海市场。 这个领域机会太多了
De novo design of protein interactions with learned surface fingerprints
翻译
Abstract:
Physical interactions between proteins are essential for most biological processes governing life. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.
翻译