半面阳光 (2022-08-31 21:17):
#paper https://doi.org/10.1016/j.gim.2022.04.021. Recommendations for next generation sequencing data reanalysis of unsolved cases with suspected Mendelian disorders: A systematic review and meta-analysis. 这篇文章发表在2022年8月的Genetics in Medicine上,是一篇系统综述。基于NGS的临床全外显子组(WES)和临床全基因组(WGS)测序给孟德尔遗传病的诊断带来了很多进展,但是有超过50%的病例无法从测序结果中得到明确的致病原因。周期性地对这些没有明确结论的测序数据进行重新分析有助于进一步确定致病变异。那么重新分析的患者获益有多少、临床应用的可行性有多大,还有在初次测序后多长时间进行重新分析,以及选择什么方法和工具进行分析都是尚待探究讨论的问题。这篇文章意图分析和解答这些问题。作者采用了meta分析的方法首先对2007年到2021年发表的相关文献进行了检索和初步筛选。接着针对文章的主题,设计了一个文献筛选标准,最终筛选得到29篇研究性文献,包含了9419个未确诊的孟德尔遗传病患者。研究发现,重新分析的整体诊断产出为0.10(95% CI = 0.06-0.13)。大部分诊断结果的更新取决于遗传变异的新文献报道。重新分析得到确诊结果在初次检测的24个月后比较多,但是这个数据并没有统计意义。基于AI的一些新分析工具对于提高重新分析的诊断率并没有显著的价值。此外,对测序数据进行重新分析的研究文章有很大的差异性,这也使得本文的一些关键问题无法得出有意义的结论,作者最后也提出希望可以有标准化指南来指导后续的重新分析研究。除了研究结果和结论本身,这篇文章另一个值得借鉴的内容是其研究方法。在研究方法部分作者参考了很多筛选文献、评估研究数据的标准化方法和指南,这对于我们平时管理文献和数据、从文献中提取关键信息、对变异进行biocuration都很有帮助。作为ACMG的官方期刊,Genetics in Medicine最近发表了不少这方面的综述性文章,以及AI与临床NGS数据分析结合的文章。
Recommendations for next generation sequencing data reanalysis of unsolved cases with suspected Mendelian disorders: A systematic review and meta-analysis
翻译
Abstract:
PURPOSE: The study aimed to determine the diagnostic yield, optimal timing, and methodology of next generation sequencing data reanalysis in suspected Mendelian disorders.METHODS: We conducted a systematic review and meta-analysis of studies that conducted data reanalysis in patients with suspected Mendelian disorders. Random effects model was used to pool the estimated outcome with subgroup analysis stratified by timing, sequencing methodology, sample size, segregation, use of research validation, and artificial intelligence (AI) variant curation tools.RESULTS: A search of PubMed, Embase, Scopus, and Web of Science between 2007 and 2021 yielded 9327 articles, of which 29 were selected. Significant heterogeneity was noted between studies. Reanalysis had an overall diagnostic yield of 0.10 (95% CI = 0.06-0.13). Literature updates accounted for most new diagnoses. Diagnostic yield was higher after 24 months, although this was not statistically significant. Increased diagnoses were obtained with research validation and data sharing. AI-based tools did not adversely affect reanalysis diagnostic rate.CONCLUSION: Next generation sequencing data reanalysis can improve diagnostic yield. Owing to the heterogeneity of the studies, the optimal time to reanalysis and the impact of AI-based tools could not be determined with confidence. We propose standardized guidelines for future studies to reduce heterogeneity and improve the quality of the conclusions.
翻译
回到顶部