李翛然 (2026-01-31 23:04):
#paper doi:10.1038/s41586-025-10014-0 Nature Advancing regulatory variant effect prediction with AlphaGenome。 AlphaGenome,这是一个能够统一解读 DNA 非编码“暗物质”的深度学习模型。该模型可直接输入长达 1 兆碱基对(1 Mb)‍ 的 DNA 序列,以单碱基分辨率同时预测数千种基因组功能信号(如染色质可及性、转录因子结合、剪接等)在性能上,AlphaGenome 在 24 项基因组轨迹预测任务中的 22 项,以及 26 项变异效应预测任务中的 24 项 上达到了最先进水平。它能够准确预测非编码变异如何影响基因调控,例如成功解析了白血病相关癌基因 TAL1 附近变异的作用机制。我觉得他倒是和 kegg没有特别让我眼前一亮的。
IF:50.500Q1 Nature, 2026-1-29. DOI: 10.1038/s41586-025-10014-0 PMID: 41606153
Advancing regulatory variant effect prediction with AlphaGenome
翻译
Abstract:
Abstract Deep learning models that predict functional genomic measurements from DNA sequences are powerful tools for deciphering the genetic regulatory code. Existing methods involve a trade-off between input sequence length and prediction resolution, thereby limiting their modality scope and performance 1–5 . We present AlphaGenome, a unified DNA sequence model, which takes as input 1 Mb of DNA sequence and predicts thousands of functional genomic tracks up to single-base-pair resolution across diverse modalities. The modalities include gene expression, transcription initiation, chromatin accessibility, histone modifications, transcription factor binding, chromatin contact maps, splice site usage and splice junction coordinates and strength. Trained on human and mouse genomes, AlphaGenome matches or exceeds the strongest available external models in 25 of 26 evaluations of variant effect prediction. The ability of AlphaGenome to simultaneously score variant effects across all modalities accurately recapitulates the mechanisms of clinically relevant variants near the TAL1 oncogene 6 . To facilitate broader use, we provide tools for making genome track and variant effect predictions from sequence.
翻译
回到顶部