孤舟蓑笠翁
(2025-09-09 14:54):
paper 【doi】10.1038/s41586-025-09445-6;【发表年份】2025年;【期刊】Nature;【标题】Mechanical confinement governs phenotypic plasticity in melanoma。【内容总结】这篇论文研究了黑色素瘤细胞如何在外界机械压力下从增殖状态转变为侵袭状态。简单来说,科学家发现当肿瘤细胞被周围组织挤压时,会像神经元一样长出保护性微管结构,同时激活HMGB2蛋白来改变染色质结构,使细胞变得更擅长移动但不太会分裂,还更耐药。具体来说,团队通过斑马鱼模型和人类样本发现,处于肿瘤边缘的细胞会形成椭圆形的受压细胞核,这些"界面细胞"表现出神经元样基因特征。他们开发了体外微限制系统模拟这种压力,发现受压细胞会形成乙酰化微管笼保护细胞核,并通过HMGB2蛋白改变染色质可及性。关键方法包括:空间转录组学、单细胞RNA测序、体外微限制实验、ATAC-seq分析染色质开放性和TurboID蛋白质互作分析。结果显示机械限制通过HMGB2介导的表型转换使黑色素瘤获得侵袭性和耐药性,这为理解肿瘤转移提供了新视角。
Nature,
2025-8-27.
DOI: 10.1038/s41586-025-09445-6
Mechanical confinement governs phenotypic plasticity in melanoma
翻译
Abstract:
Abstract Phenotype switching is a form of cellular plasticity in which cancer cells reversibly move between two opposite extremes: proliferative versus invasive states1,2. Although it has long been hypothesized that such switching is triggered by external cues, the identity of these cues remains unclear. Here we demonstrate that mechanical confinement mediates phenotype switching through chromatin remodelling. Using a zebrafish model of melanoma coupled with human samples, we profiled tumour cells at the interface between the tumour and surrounding microenvironment. Morphological analysis of interface cells showed elliptical nuclei, suggestive of mechanical confinement by the adjacent tissue. Spatial and single-cell transcriptomics demonstrated that interface cells adopted a gene program of neuronal invasion, including the acquisition of an acetylated tubulin cage that protects the nucleus during migration. We identified the DNA-bending protein HMGB2 as a confinement-induced mediator of the neuronal state. HMGB2 is upregulated in confined cells, and quantitative modelling revealed that confinement prolongs the contact time between HMGB2 and chromatin, leading to changes in chromatin configuration that favour the neuronal phenotype. Genetic disruption of HMGB2 showed that it regulates the trade-off between proliferative and invasive states, in which confined HMGB2high tumour cells are less proliferative but more drug-resistant. Our results implicate the mechanical microenvironment as a mechanism that drives phenotype switching in melanoma.
翻译
Related Links: