孤舟蓑笠翁
(2025-09-04 10:30):
paper 【doi】10.1038/s41586-025-09435-8;【发表年份】2025年;【期刊】Nature;【标题】Single-cell transcriptomic and genomic changes in the ageing human brain。【内容总结】这篇论文研究了人类大脑前额叶皮层从婴儿期到百岁老人期间的细胞水平变化,目标是理解健康大脑衰老过程中基因表达和基因组突变的规律。研究者使用了三种单细胞技术:单核RNA测序(snRNA-seq)分析基因表达,单细胞全基因组测序(scWGS)检测体细胞突变,以及MERFISH空间转录组技术进行验证。他们发现婴儿大脑中存在表达神经发育基因的特殊神经元和星形胶质细胞集群,而衰老过程中管家基因(如核糖体和线粒体相关基因)普遍下调,但神经元特异性基因保持稳定。通过突变特征分析,他们鉴定出两种与年龄相关的突变模式:A1突变与高表达基因和活跃染色质区域相关,A2突变则富集于低表达区域。特别有趣的是,短管家基因在衰老过程中因高突变率而表达下降,而长神经元基因则受到拓扑异构酶的保护维持稳定。这些发现揭示了大脑衰老中基因长度、功能和DNA损伤之间的复杂关系,为理解认知衰退提供了新视角。
Single-cell transcriptomic and genomic changes in the ageing human brain
翻译
Abstract:
Over time, cells in the brain and in the body accumulate damage, which contributes to the ageing process. In the human brain, the prefrontal cortex undergoes age-related changes that can affect cognitive functioning later in life. Here, using single-nucleus RNA sequencing (snRNA-seq), single-cell whole-genome sequencing (scWGS) and spatial transcriptomics, we identify gene-expression and genomic changes in the human prefrontal cortex across lifespan, from infancy to centenarian. snRNA-seq identified infant-specific cell clusters enriched for the expression of neurodevelopmental genes, as well as an age-associated common downregulation of cell-essential homeostatic genes that function in ribosomes, transport and metabolism across cell types. Conversely, the expression of neuron-specific genes generally remains stable throughout life. These findings were validated with spatial transcriptomics. scWGS identified two age-associated mutational signatures that correlate with gene transcription and gene repression, respectively, and revealed gene length- and expression-level-dependent rates of somatic mutation in neurons that correlate with the transcriptomic landscape of the aged human brain. Our results provide insight into crucial aspects of human brain development and ageing, and shed light on transcriptomic and genomic dynamics.
翻译
Related Links: