李翛然
(2024-07-30 20:10):
#paper DOI:10.1101/2023.08.08.552403 Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN 这篇文章怎么说呢,一看就是搞计算机人写的。我来说说为啥。
介绍了一种名为SHAMAN的计算技术,可以识别RNA结构集合中的潜在小分子结合位点。与依赖静态结构的其他计算工具不同,SHAMAN旨在解决RNA分子动态性带来的挑战。该技术通过分析RNA结构的构象集合,而不仅仅是单一静态结构,来识别潜在的结合位点。这种方法对于理解小分子与RNA柔性和动态性之间的相互作用特别有用。
这里面的关键点,是RNA的构象如何确定的,但是他是使用这个方法确定rna构象的:
1.使用分子动力学(MD)模拟来生成RNA的构象集合。论文中提到使用了Amber力场和TIP3P水模型进行了100 ns的MD模拟。
2.从MD轨迹中提取出具有代表性的RNA构象集合。作者使用了聚类算法来对MD轨迹进行聚类,选择了聚类中心作为代表性构象。
3. 这些代表性构象进行分析,识别小分子可能结合的位点。SHAMAN工具就是用来分析这些构象集合,预测小分子的可能结合位点。
这就很扯了, 用聚类的方法来选取最有可能的rna 结构,这不扯呢么! 邮箱TIP3P水模型就已经是生物容忍的最低限度了,居然在这个状态下模拟rna,然后用数学聚类的方法来选取构想。 有点扯!缺乏 实验室人员的嘲讽~~~哈哈
bioRxiv,
2024-2-28.
DOI: 10.1101/2023.08.08.552403
Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN
翻译
Abstract:
AbstractThe rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Mostin silicotools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identified all the experimentally resolved pockets and ranked them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.
翻译
Related Links: