来自用户 数据简化社区(秦陇纪) 的文献。
当前共找到 1 篇文献分享。
1.
数据简化社区(秦陇纪) (2022-02-13 10:29):
#paper ArXiv:2202.02435v1 [cs.LG] On Neural Differential Equations. 牛津大学数学研究所帕特里克·基格尔(Patrick Kidger)的博士学位论文The webpage at https://arxiv.org/pdf/2202.02435v1.pdf,参考链接https://www.maths.ox.ac.uk/people/patrick.kidger,https://www.reddit.com/r/MachineLearning/comments/snmtzn/r_phd_thesis_on_neural_differential_equations/。 一、这篇231页的博士论文专门探讨神经微分方程(neural ODE),主要内容包括如下:①神经常微分方程(neural ordinary diffeqs):用于学习物理系统,作为离散架构的连续时间限制,包括对可表达性的理论结果;②神经受控微分方程(neural controlled diffeqs):用于建模时间序列函数、处理不规则数据;③神经随机微分方程(neural stochastic diffeqs):用于从复杂的高维随机动态中采样;④数值法(numerical methods):一类新的可逆微分方程求解器或布朗重建(Brownian reconstruction)问题。 二、论文中归纳神经微分方程(neural differential equation, NDEs)的 4 个主要应用为:①物理建模;②时间序列;③生成式建模;④一种开发深度学习模型的策略:取适当的微分方程并将其离散化。 三、用于神经微分方程的数值求解和训练的软件包目前已经进行了标准化,文中提供了几种选择供读者使用:1.在JAX生态系统 [Bra+18] 的Diffrax, https://github.com/patrick-kidger/diffrax;2.在PyTorch生态系统 [Pas+19] 中的torchdiffeq、torchcde 和 torchsde 系列库, https://github.com/rtqichen/torchdiffeq,https://github.com/patrick-kidger/torchcde ,https://github.com/google-research/torchsde ,https://github.com/DiffEqML/torchdyn ;3.在Julia [Bez+17] 生态系统中的 DifferentialEquations.jl, https://github.com/SciML/DifferentialEquations.jl 。
Abstract: No abstract available.
回到顶部