Ricardo (2023-09-21 17:32):
#paper https://www.biorxiv.org/content/10.1101/2023.09.15.557874v1.full SACNet: A Multiscale Diffeomorphic Convolutional Registration Network with Prior Neuroanatomical Constraints for Flexible Susceptibility Artifact Correction in Echo Planar Imaging 这是我最近released的一个工作。由于回波平面成像技术成像(EPI)速度较快,因此弥散磁共振成像和功能磁共振成像大都会采用EPI技术进行影像采集工作。但是EPI图像中一般会存在磁敏感性伪影(Susceptibility Artifacts, SAs),从而会导致采集的影像存在几何和信号上的扭曲。目前的伪影校正算法一般是针对特定采集序列的图像开发专门的方法,并且存在处理时间较长且校正质量有限等问题。因此,在这个研究中,我提出了一个基于无监督学习的卷积配准网络的伪影校正框架,该框架有以下几点技术创新:1. 我们建立了一个统一的数学框架,通过修正模型超参数,从而可以灵活地用于多相位编码和单相位编码数据的校正;2. 我们通过修改核物理领域内用于模拟无限深势阱的Woods-Saxon势函数,从而提出了一个微分同胚保持函数,用于生成微分同胚形变场;3. 我们设计了一个先验解剖学信息约束函数,从而将没有伪影的T1w/T2w图像中的先验结构信息纳入模型中;4. 我们最后针对该问题设计了一套多尺度的训练及推理协议用于网络的快速训练并优化模型收敛。通过在涵盖新生儿、儿童以及健康成年人的2000个脑影像扫描数据上实验证明,我们的方法比现有的方法表现出更加优异的性能。
SACNet: A Multiscale Diffeomorphic Convolutional Registration Network with Prior Neuroanatomical Constraints for Flexible Susceptibility Artifact Correction in Echo Planar Imaging
翻译
Abstract:
AbstractSusceptibility artifacts (SAs), which are inevitable for modern diffusion brain MR images with single-shot echo planar imaging (EPI) protocols in wide large-scale neuroimaging datasets, severely hamper the accurate detection of the human brain white matter structure. While several conventional and deep-learning based distortion correction methods have been proposed, the correction quality and model generality of these approaches are still limited. Here, we proposed the SACNet, a flexible SAs correction (SAC) framework for brain diffusion MR images of various phase-encoding EPI protocols based on an unsupervised learning-based registration convolutional neural network. This method could generate smooth diffeomorphic warps with optional neuroanatomy guidance to correct both geometric and intensity distortions of SAs. By employing near 2000 brain scans covering neonatal, child, adult and traveling participants, our SACNet consistently demonstrates state-of-the-art correction performance and effectively eliminates SAs-related multicenter effects compared with existing SAC methods. To facilitate the development of standard SAC tools for future neuroimaging studies, we also created easy-to-use command lines incorporating containerization techniques for quick user deployment.
翻译
回到顶部