Spring (2023-06-30 13:17):
#paper Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid doi: 10.1038/s41564-023-01418-7 ① 小鼠模型中,菊粉比纤维素能更有效地抑制非酒精性脂肪肝炎(NASH)进展;② 用稳定同位素探测法(13C标记的菊粉)结合宏基因组测序和代谢组分析,发现菊粉可改变肠道菌群(富集潜在有益菌、抑制潜在致病菌)并可被特定肠菌吸收,其中被菊粉富集的狄氏副拟杆菌(Pd)可活跃地利用菊粉生成脂肪酸十五烷酸;③ 菊粉、Pd或十五烷酸可恢复NASH小鼠模型的肠道屏障功能,从而减少血清脂多糖和肝脏促炎细胞因子表达,对NASH发挥保护作用。
IF:20.500Q1 Nature microbiology, 2023-08. DOI: 10.1038/s41564-023-01418-7 PMID: 37386075
Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid
翻译
Abstract:
Non-alcoholic steatohepatitis (NASH) is the severe form of non-alcoholic fatty liver disease, and is characterized by liver inflammation and fat accumulation. Dietary interventions, such as fibre, have been shown to alleviate this metabolic disorder in mice via the gut microbiota. Here, we investigated the mechanistic role of the gut microbiota in ameliorating NASH via dietary fibre in mice. Soluble fibre inulin was found to be more effective than insoluble fibre cellulose to suppress NASH progression in mice, as shown by reduced hepatic steatosis, necro-inflammation, ballooning and fibrosis. We employed stable isotope probing to trace the incorporation of C-inulin into gut bacterial genomes and metabolites during NASH progression. Shotgun metagenome sequencing revealed that the commensal Parabacteroides distasonis was enriched by C-inulin. Integration of C-inulin metagenomes and metabolomes suggested that P. distasonis used inulin to produce pentadecanoic acid, an odd-chain fatty acid, which was confirmed in vitro and in germ-free mice. P. distasonis or pentadecanoic acid was protective against NASH in mice. Mechanistically, inulin, P. distasonis or pentadecanoic acid restored gut barrier function in NASH models, which reduced serum lipopolysaccharide and liver pro-inflammatory cytokine expression. Overall this shows that gut microbiota members can use dietary fibre to generate beneficial metabolites to suppress metabolic disease.
翻译
回到顶部