颜林林 (2022-12-30 20:49):
#paper doi:10.1038/s41551-022-00952-9 Nat. Biomed. Eng, 2022, A deep-learning model for transforming the style of tissue images from cryosectioned to formalin-fixed and paraffin-embedded. 在肿瘤诊治过程中,经常需要通过对肿瘤组织进行组织学检查,得到病理诊断结果,才能做出合适的治疗方案。病理组织学检查,需要对组织进行福尔马林固定、石蜡包埋和切片制片,然后将切片放置在显微镜下进行观察,整个过程非常耗时耗力,因而难以应用于手术期间快速决策。冰冻组织切片虽然可以快速进行,但该技术面临细胞结构不容易保留、经常出现各类人为实验因素造成的伪影(artefacts)等挑战,干扰组织学检查过程。本文构建了一个基于GAN的深度学习模型AI-FFPE,用来将冰冻组织切片图像转换成为石蜡包埋组织切片风格,并以此修正各类伪影,提升通过冰冻组织切片来进行组织学检查的效率。经该模型应用于脑肿瘤和肺癌的病理图像公共数据集,进行验证和评估,确实有效修正了相关伪影问题,且效果相对其他专门进行病理图像修正的工具算法更好。此外,本文还将AI-FFPE的输出图像,交给27位病理医生进行人工评估,以及交给之前已发表的AI阅片程序进行分类,其结果也都支持AI-FFPE策略的有效性。
A deep-learning model for transforming the style of tissue images from cryosectioned to formalin-fixed and paraffin-embedded
翻译
Abstract:
Histological artefacts in cryosectioned tissue can hinder rapid diagnostic assessments during surgery. Formalin-fixed and paraffin-embedded (FFPE) tissue provides higher quality slides, but the process for obtaining them is laborious (typically lasting 12-48 h) and hence unsuitable for intra-operative use. Here we report the development and performance of a deep-learning model that improves the quality of cryosectioned whole-slide images by transforming them into the style of whole-slide FFPE tissue within minutes. The model consists of a generative adversarial network incorporating an attention mechanism that rectifies cryosection artefacts and a self-regularization constraint between the cryosectioned and FFPE images for the preservation of clinically relevant features. Transformed FFPE-style images of gliomas and of non-small-cell lung cancers from a dataset independent from that used to train the model improved the rates of accurate tumour subtyping by pathologists.
翻译
回到顶部