吴增丁
(2022-08-31 17:15):
#paper https://doi.org/10.1038/s41592-022-01488-1 这篇于2022年发表在nature method的文章,介绍了一种基于AlphaFold2的蛋白质折叠预测的接口工具ColabFold。该工具首要解决了一个广大用户使用AlphaFold2的难点,就是在无GUP,无大存储计算资源下依然可以使用这些蛋白质结构预测的工具,并且提升了计算速度。 ColabFold工作主要在三个方面:1.在多序列比对(MSA)时用MMseqs2替换了 HMMer和HHblits的方法,从结果看提高了约50倍速度且保持高准确度。值得提一下,MSA在蛋白质结构预测中是主要的限速步骤;2.构建了自己的同源比对数据库ColabFoldDB。 相比较Big Fantastic Databse(BFD)和 MGnify database,ColabFoldDB数据库具有更好的MSA多样性。3.开发基于Google Colaboratory的notebook版本的使用接口 ,这个使用工具允许无计算资源和编程经验的用户方便使用https://github.com/sokrypton/ColabFold。当然也开发了本地命令行版本https://github.com/YoshitakaMo/localcolabfold
IF:36.100Q1
Nature methods,
2022-06.
DOI: 10.1038/s41592-022-01488-1
PMID: 35637307
PMCID:PMC9184281
ColabFold: making protein folding accessible to all
翻译
Abstract:
ColabFold offers accelerated prediction of protein structures and complexes by combining the fast homology search of MMseqs2 with AlphaFold2 or RoseTTAFold. ColabFold's 40-60-fold faster search and optimized model utilization enables prediction of close to 1,000 structures per day on a server with one graphics processing unit. Coupled with Google Colaboratory, ColabFold becomes a free and accessible platform for protein folding. ColabFold is open-source software available at https://github.com/sokrypton/ColabFold and its novel environmental databases are available at https://colabfold.mmseqs.com .
翻译