颜林林 (2022-05-31 07:28):
#paper doi:10.1038/s41586-021-03583-3 Nature 2021, Swarm Learning for decentralized and confidential clinical machine learning. 精准医学的发展得益于数据的快速积累,然而数据共享却始终是数据充分使用的重大障碍。本文提出一种群体学习方法,它结合了边缘计算、区块链等技术,使数据拥有者可以在不违反隐私法规的情况下,让数据可以在全球范围被集成使用,从而解决药物靶标发现、诊断标志物发现等精准医学研究目标所亟需的大规模数据整合需求。为验证该方法的可行性,本文选取了四种疾病,新冠、结核、白血病和肺病,包括血液转录组和胸部X光片数据,且这些数据存在普遍的异质性和对照分布不均匀等问题,对这些数据进行此群体学习的分析。通过将数据分散到不同网络节点,并让这些节点动态加入计算,最终实现对这些疾病的识别或亚型鉴定,并与传统机器学习方法结果进行对比。本文最近在Nature Reviews Immunology的一篇comment上被再次提及,并介绍了其白血病临床诊断已被欧盟成功标准化并随后商业化,进一步验证了该方法的实际价值。同时,由于它以“共享见解而非共享数据(sharing insights, not data)”的方式进行协作,对于当下诸如医学免疫学等复杂研究,也将起到更大作用。
IF:50.500Q1 Nature, 2021-06. DOI: 10.1038/s41586-021-03583-3 PMID: 34040261 PMCID:PMC8189907
Swarm Learning for decentralized and confidential clinical machine learning
翻译
Abstract:
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.
翻译
回到顶部