孤舟蓑笠翁 (2025-10-15 10:32):
paper 【doi】10.1038/s41588-025-02351-7;【发表年份】2025年;【期刊】Nature Genetics;【标题】Spatial signatures for predicting immunotherapy outcomes using multi-omics in non-small cell lung cancer。【内容总结】这项研究的目标是开发能够预测非小细胞肺癌(NSCLC)患者对免疫治疗(基于PD-1的疗法)反应的生物标志物,因为目前只有少数患者能从中受益,且治疗可能产生严重副作用。研究团队采用了一种结合空间信息的多种组学技术(称为“空间多组学”),具体包括空间蛋白质组学(使用CODEX技术)和空间转录组学(使用DSP-GeoMx WTA技术),对来自三个独立患者队列(耶鲁大学、昆士兰大学和雅典大学,共234名晚期NSCLC患者)的肿瘤样本进行了分析,以描绘肿瘤免疫微环境(TIME),并运用机器学习方法(如LASSO惩罚的Cox回归模型)来训练与治疗结果相关的细胞类型特征和基因特征。研究发现,在肿瘤区域,增殖的肿瘤细胞、粒细胞和血管细胞构成了一个“耐药特征”,与较差的2年无进展生存期(PFS)显著相关(在训练队列中风险比HR=3.8);而在基质区域,M1/M2巨噬细胞和CD4 T细胞构成了一个“应答特征”,与较好的PFS相关(在训练队列中HR=0.4)。进一步地,研究从这些细胞类型中提取出相关的基因,构建了基因层面的特征,例如耐药基因特征(包含KRT7, KRT18等8个基因)在验证队列中也能预测较差的PFS(HR在1.7到5.3之间),而应答基因特征(包含SIGLEC1, CXCL9等8个基因)则预测较好的PFS(HR在0.22到0.56之间)。空间分析还揭示了这些细胞之间的相互作用和空间分布模式,例如发现巨噬细胞上的PD-L1表达(而非肿瘤细胞上的)与更好的治疗反应相关。这些空间多组学特征为在NSCLC中实现精准免疫治疗提供了新的强大工具。
Spatial signatures for predicting immunotherapy outcomes using multi-omics in non-small cell lung cancer
翻译
Abstract:
Abstract Non-small cell lung cancer (NSCLC) shows variable responses to immunotherapy, highlighting the need for biomarkers to guide patient selection. We applied a spatial multi-omics approach to 234 advanced NSCLC patients treated with programmed death 1-based immunotherapy across three cohorts to identify biomarkers associated with outcome. Spatial proteomics (n = 67) and spatial compartment-based transcriptomics (n = 131) enabled profiling of the tumor immune microenvironment (TIME). Using spatial proteomics, we identified a resistance cell-type signature including proliferating tumor cells, granulocytes, vessels (hazard ratio (HR) = 3.8, P = 0.004) and a response signature, including M1/M2 macrophages and CD4 T cells (HR = 0.4, P = 0.019). We then generated a cell-to-gene resistance signature using spatial transcriptomics, which was predictive of poor outcomes (HR = 5.3, 2.2, 1.7 across Yale, University of Queensland and University of Athens cohorts), while a cell-to-gene response signature predicted favorable outcomes (HR = 0.22, 0.38 and 0.56, respectively). This framework enables robust TIME modeling and identifies biomarkers to support precision immunotherapy in NSCLC.
翻译
回到顶部