小W
(2022-02-22 18:02):
#paper doi 10.1038 : A knowledge graph to interpret clinical proteomics data. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-021-01145-6这篇文章发布了一个临床知识图谱 (CKG),这是一个开源平台,目前包含近 2000 万个节点和 2.2 亿个关系,包括相关的实验数据、公共数据库和文献。CKG 图结构提供了一个灵活的数据模型,当新数据库可用时,该模型很容易扩展到新节点和关系。CKG 结合了统计和机器学习算法,可加速典型蛋白质组学工作流程的分析和解释。CKG 在 21 年初的时候就已经开源相关代码和数据库文件,当时我测试了相关的分析脚本还有蛮大问题,发表文章后又有一些新的不成熟的看法。另外一个阿斯利康的图谱文章写得对生信还蛮有收获。doi 10.1101 Biological Insights Knowledge Graph: an integrated knowledge graph to support drug development
A knowledge graph to interpret clinical proteomics data
翻译
Abstract:
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.
翻译