白鸟 (2025-02-28 17:55):
#paper DOI:10.1126/science.adp2407. Disease diagnostics using machine learning of B cell and T cell receptor sequences.Science387,eadp2407(2025). 作者尝试通过AI模型,利用病人的T/B免疫组库来进行疾病诊断,检测特定感染、自身免疫性疾病、疫苗反应和疾病严重程度差异。斯坦福大学团队开发的Mal-ID人工智能系统,分析593名个体的免疫受体数据集,开发基于机器学习的Mal-ID免疫诊断系统。该系统包括三个基础模型(分别针对BCR和TCR数据进行训练)和一个集合模型(将所有基础模型组合在一起)。 模型1:整体免疫组库,个体的IgH或TRB免疫组库组成差异来预测疾病状态。 模型2:CDR3氨基酸序列相似性,特定疾病公共克隆聚类,计算病人与每种疾病相关的匹配簇数量; 模型3:从蛋白质语言模型中提取的免疫受体序列特征 ; 感兴趣的点,是我们如何利用庞大的免疫组库数据,开发临床应用。
Science, 2025-2-21. DOI: 10.1126/science.adp2407
Disease diagnostics using machine learning of B cell and T cell receptor sequences
翻译
Abstract:
Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system’s own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis, an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to severe acute respiratory syndrome coronavirus 2, influenza, and human immunodeficiency virus, highlight antigen-specific receptors, and reveal distinct characteristics of systemic lupus erythematosus and type-1 diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of immune responses.
翻译
回到顶部