白鸟 (2024-11-30 20:32):
#paper doi: 10.1101/2024.01.11.575135 Comparative analysis of multiplexed in situ gene expression profiling technologies. bioRxiv.2024. Satija团队利用seurat分析不同技术平台的小鼠大脑空间数据,构建基准分析,也可间接评价不同技术平台的优劣。 跨平台基准测试,重要指标是每个细胞的分子数量。我们可以用 “空间捕获越多越好 ”来衡量,但实际上,这些指标不同技术差异较大,也很难解释清楚差异。 原因主要有两个:一是原位数据本身的差异,二是不同技术公司使用的标记panel非常不同。Satija团队尝试只比较两种技术之间的共享基因,但还是存在问题。如星形胶质细胞标记与神经元细胞标记是相斥的,它们不应该在同一个细胞内被检测到。单细胞转录组的数据也显示,两类型的marker是互斥的,不存在共表达。但在原位数据中,互斥marker存在不同程度的共表达。原因在于不同技术的细胞分割方法,细胞边界更大的区域会捕获更多的分子。如果细胞分割算法不统一,我们无法比较两个数据集的分子计数,这是不对等的评价。 原位空间基准测试,我们不能仅从作者提供的输出结果进行评判,我们需要制定衡量标准和分割流程来控制这种现象,比较不同技术的灵敏度。
Comparative analysis of multiplexed in situ gene expression profiling technologies
翻译
Abstract:
AbstractThe burgeoning interest in in situ multiplexed gene expression profiling technologies has opened new avenues for understanding cellular behavior and interactions. In this study, we present a comparative benchmark analysis of six in situ gene expression profiling methods, including both commercially available and academically developed methods, using publicly accessible mouse brain datasets. We find that standard sensitivity metrics, such as the number of unique molecules detected per cell, are not directly comparable across datasets due to substantial differences in the incidence of off-target molecular artifacts impacting specificity. To address these challenges, we explored various potential sources of molecular artifacts, developed novel metrics to control for them, and utilized these metrics to evaluate and compare different in situ technologies. Finally, we demonstrate how molecular false positives can seriously confound spatially-aware differential expression analysis, requiring caution in the interpretation of downstream results. Our analysis provides guidance for the selection, processing, and interpretation of in situ spatial technologies.
翻译
回到顶部