DeDe宝 (2024-09-12 14:24):
#paper, DOI: 10.1073/pnas.0805414105 ,Neural basis of the cognitive map: Path integration does not require hippocampus or entorhinal cortex. 研究主要探讨了海马体和内嗅皮层在记忆功能和空间认知中的作用,尤其是它们在路径整合能力中的作用。路径整合是指利用自身运动线索来跟踪参考位置的能力。当被试被要求蒙上眼睛导航并指向起点位置,海马体或内嗅皮层受损的被试表现与对照组相似。在距离估计任务中,受损组和对照组的估计也相似。只有在延迟和分心条件下,受损组表现不如对照组,显示了他们在长期记忆任务上的困难。上述结果表明,虽然海马体和内嗅皮层对于长期记忆至关重要,但它们对于路径整合的空间计算并不是必需的。
Neural basis of the cognitive map: Path integration does not require hippocampus or entorhinal cortex
翻译
Abstract:
The hippocampus and entorhinal cortex have been linked to both memory functions and to spatial cognition, but it has been unclear how these ideas relate to each other. An important part of spatial cognition is the ability to keep track of a reference location using self-motion cues (sometimes referred to as path integration), and it has been suggested that the hippocampus or entorhinal cortex is essential for this ability. Patients with hippocampal lesions or larger lesions that also included entorhinal cortex were led on paths while blindfolded (up to 15 m in length) and were asked to actively maintain the path in mind. Patients pointed to and estimated their distance from the start location as accurately as controls. A rotation condition confirmed that performance was based on self-motion cues. When demands on long-term memory were increased, patients were impaired. Thus, in humans, the hippocampus and entorhinal cortex are not essential for path integration.
翻译
回到顶部