当前共找到 1 篇文献分享。
1.
张浩彬
(2022-12-31 23:07):
#paper doi:10.1145/3447548.3467401
A transformer-based framework for multivariate time series representation learning
1.多头transformer可以对应到时间序列的多周期。
2. 在通用框架中:原始数据先进行投影并加入位置信息得到第一次引入位置的编码
3. 只用transformer的编码器提取特征,而不适用解码器,使得其更能适应各种下游任务
4. 另外由于transformer对顺序不敏感,因此模型也将位置编码到输入向量
5. 对于变长数据的处理,本文使用任意值掩码进行填充,并为填充位置的注意力分数提供了一个很大的负值迫使忽略填充位置(这个掩码是初始值,后续是否有可能更新到非负值?)
6. 掩码的实际应用了一定的技巧。另外对掩码的预测实际上就将其变为了一个非时间序列问题,而是一个nlp的填空问题
7. 预训练模型:对于多变量的时间序列,对于每个变量随机独立地屏蔽一段子序列。而在损失函数中,仅考虑对被屏蔽段的损失。
8. 模型最后的任务是回归和分类。但是回归并不是用于对未来时间的预测,而是类似于利用房屋的气压,湿度,风速数据预测房屋的当天能耗,使用的是MSE。分类任务则是使用交叉熵
9. 下游任务似乎只是简单的全连接层
10. 模型的比较对象是reocket,lstm,xgb--这个比较就有点差强人意了
Abstract:
We present a novel framework for multivariate time series representation learning based on the transformer encoder architecture. The framework includes an unsupervised pre-training scheme, which can offer substantial performance benefits …
>>>
We present a novel framework for multivariate time series representation learning based on the transformer encoder architecture. The framework includes an unsupervised pre-training scheme, which can offer substantial performance benefits over fully supervised learning on downstream tasks, both with but even without leveraging additional unlabeled data, i.e., by reusing the existing data samples. Evaluating our framework on several public multivariate time series datasets from various domains and with diverse characteristics, we demonstrate that it performs significantly better than the best currently available methods for regression and classification, even for datasets which consist of only a few hundred training samples. Given the pronounced interest in unsupervised learning for nearly all domains in the sciences and in industry, these findings represent an important landmark, presenting the first unsupervised method shown to push the limits of state-of-the-art performance for multivariate time series regression and classification.
<<<
翻译