当前共找到 2 篇文献分享。
1.
前进 (2022-11-28 10:25):
#paper Zhu Y , Lu S . Swin-VoxelMorph: A Symmetric Unsupervised Learning Model forDeformable Medical Image Registration Using Swin Transformer[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2022. 可变形医学图像配准广泛应用于医学图像处理中,具有可逆一对一的映射。虽然最先进的图像配准方法是基于卷积神经网络,但很少有人尝试用Transformer的方法。现有的模型忽略了在嵌入学习中使用注意机制来处理远程交叉图,限制了这种方法来识别解剖结构的语义上有意义的对应关系。这些方法虽然实现了快速的图像配准,但也忽略了变换的拓扑保存和可逆性。在本文中,提出了一种新的基于Swin Transformer对称无监督学习网络,它可以最小化图像之间的差异,并同时估计正变换和逆变换像相关性.具体地说,本文提出了三维Swin-UNet,它应用具有Shfited window的分层Swin Transformer作为编码器来提取上下文特征。设计了一种基于patch expanding的symmetric swin Transformer解码器,进行上采样操作,估计配准场。此外,目标损失函数可以保证预测变换的实质性微分性质。本文在ADNI和PPMI两个数据集上验证了该方法,并在保持理想的微分性质的同时实现了最先进的配准精度。
Abstract:
Deformable medical image registration is widely used in medical image processing with the invertible and one-to-one mapping between images. While state-of-the-art image registration methods are based on convolutional neural networks, … >>>
Deformable medical image registration is widely used in medical image processing with the invertible and one-to-one mapping between images. While state-of-the-art image registration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on computer vision tasks. Existing models neglect to employ attention mechanisms to handle the long-range cross-image relevance in embedding learning, limiting such approaches to identify the semantically meaningful correspondence of anatomical structures. These methods also ignore the topology preservation and invertibility of the transformation although they achieve fast image registration. In this paper, we propose a novel, symmetric unsupervised learning network Swin-VoxelMorph based on the Swin Transformer which minimizes the dissimilarity between images and estimates both forward and inverse transformations simultaneously. Specifically, we propose 3D Swin-UNet, which applies hierarchical Swin Transformer with shifted windows as the encoder to extract context features. And a symmetric Swin Transformer-based decoder with patch expanding layer is designed to perform the up-sampling operation to estimate the registration fields. Besides, our objective loss functions can guarantee substantial diffeomorphic properties of the predicted transformations. We verify our method on two datasets including ADNI and PPMI, and it achieves state-of-the-art registration accuracy while maintaining desirable diffeomorphic properties. <<<
翻译
2.
前进 (2022-10-30 21:26):
#paper Shi J, He Y, Kong Y, et al. XMorpher: Full Transformer for Deformable Medical Image Registration via Cross Attention[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2022: 217-226.现有的深度网络专注于单个图像的特征提取,并且在对成对图像执行的配准任务方面受到限制。因此,本文提出了一种新的骨干网络XMorpher,有效地对变形配准中成对特征进行表示。1) 它提出了一种新的Transformer架构,包括双并行特征提取网络,该网络通过Cross Attention来改变信息,从而发现多级语义对应关系,同时逐步提取各自的特征,以实现最终的有效配准。2) 它提出了Cross Attention Transformer(CAT)块,以建立图像之间的注意力机制,该机制能够自动找到对应关系,并促使特征在网络中有效融合。3) 它限制了不同大小的基本窗口和搜索窗口之间的计算,从而集中于可变形配准的局部变换,同时提高了计算效率。XMorpher使Voxelmorph在DSC上提高了2.8%,证明了其在变形配准中对配对图像的特征的有效表示。
Abstract:
An effective backbone network is important to deep learning-based Deformable Medical Image Registration (DMIR), because it extracts and matches the features between two images to discover the mutual correspondence for … >>>
An effective backbone network is important to deep learning-based Deformable Medical Image Registration (DMIR), because it extracts and matches the features between two images to discover the mutual correspondence for fine registration. However, the existing deep networks focus on single image situation and are limited in registration task which is performed on paired images. Therefore, we advance a novel backbone network, XMorpher, for the effective corresponding feature representation in DMIR. 1) It proposes a novel full transformer architecture including dual parallel feature extraction networks which exchange information through cross attention, thus discovering multi-level semantic correspondence while extracting respective features gradually for final effective registration. 2) It advances the Cross Attention Transformer (CAT) blocks to establish the attention mechanism between images which is able to find the correspondence automatically and prompts the features to fuse efficiently in the network. 3) It constrains the attention computation between base windows and searching windows with different sizes, and thus focuses on the local transformation of deformable registration and enhances the computing efficiency at the same time. Without any bells and whistles, our XMorpher gives Voxelmorph 2.8% improvement on DSC, demonstrating its effective representation of the features from the paired images in DMIR. We believe that our XMorpher has great application potential in more paired medical images. Our XMorpher is open on https://github.com/Solemoon/XMorpher <<<
翻译
回到顶部