Ricardo (2023-05-31 23:53):
#paper DOI:https://doi.org/10.48550/arXiv.2304.00217 DrDisco: Deep Registration for Distortion Correction of Diffusion MRI with single phase-encoding 弥散加权磁共振成像(DW-MRI)是一种对人脑白质束进行无创成像的方法。dw - mri通常采用高梯度回波平面成像(echo-planar imaging, EPI)获得,会引入严重的几何畸变,影响进一步的分析。大多数校正失真的工具需要两张不同相位编码方向获取的最小加权DW-MRI图像(B0),处理每个受试者可能需要数小时。由于大量扩散数据仅在单一相位编码方向下获取,现有方法的应用受到限制。本文提出一种基于深度学习的配准方法,仅使用从单一相位编码方向获得的B0来纠正失真。通过一个深度学习模型,将未失真的t1加权图像与失真的B0图像进行配准,以消除失真。在训练过程中应用可微的互信息损失来改善模态间对齐。在Human Connectome Project数据集上的实验表明,所提出的方法在多个指标上优于SyN和VoxelMorph,且处理一个受试者只需几秒钟。
DrDisco: Deep Registration for Distortion Correction of Diffusion MRI with single phase-encoding
翻译
Abstract:
Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive way of imaging white matter tracts in the human brain. DW-MRIs are usually acquired using echo-planar imaging (EPI) with high gradient fields, which could introduce severe geometric distortions that interfere with further analyses. Most tools for correcting distortion require two minimally weighted DW-MRI images (B0) acquired with different phase-encoding directions, and they can take hours to process per subject. Since a great amount of diffusion data are only acquired with a single phase-encoding direction, the application of existing approaches is limited. We propose a deep learning-based registration approach to correct distortion using only the B0 acquired from a single phase-encoding direction. Specifically, we register undistorted T1-weighted images and distorted B0 to remove the distortion through a deep learning model. We apply a differentiable mutual information loss during training to improve inter-modality alignment. Experiments on the Human Connectome Project dataset show the proposed method outperforms SyN and VoxelMorph on several metrics, and only takes a few seconds to process one subject.
翻译
回到顶部