尹志
(2023-05-31 22:12):
#paper doi: https://doi.org/10.1016/j.drudis.2021.05.019 Drug Discovery Today, 2021, De novo molecular design and generative models. 文章是来自业界的Benevolent AI写的,对从头的分子设计进行了综述。主要从颗粒度的角度进行
了分类,讨论了atom based, fragment based, reaction based三种不同的分子表示的视角下分子设计的方法。对于分子设计中的优化方法,文章分为无梯度和基于梯度的方法进行讨论,前者主要集中在演化算法和群体智能算法,而后者则是目前基于深度生成模型的主流。文章还强调了该领域建立合适评价标准和benchmark的重要性,不过考虑到分子设计务实的属性,这里还有非常多亟待解决的问题。文章的总结的思路很清楚,但是这个领域的发展实在是太快太快,因此2021年的综述显然是太老了,最近几年基于各种深度生成模型的分子设计很多已经相当实用化,还是建议大家看最新的文章,当然这篇综述还是可以当做一条不错的线索的。
De novo molecular design and generative models
翻译
Abstract:
Molecular design strategies are integral to therapeutic progress in drug discovery. Computational approaches for de novo molecular design have been developed over the past three decades and, recently, thanks in part to advances in machine learning (ML) and artificial intelligence (AI), the drug discovery field has gained practical experience. Here, we review these learnings and present de novo approaches according to the coarseness of their molecular representation: that is, whether molecular design is modeled on an atom-based, fragment-based, or reaction-based paradigm. Furthermore, we emphasize the value of strong benchmarks, describe the main challenges to using these methods in practice, and provide a viewpoint on further opportunities for exploration and challenges to be tackled in the upcoming years.
翻译
Keywords: