笑对人生
(2023-04-30 23:23):
#paper doi: 10.1038/s41591-023-02221-x. Comitani F, et al. Diagnostic classification of childhood cancer using multiscale transcriptomics. Nat Med. 2023 Mar;29(3):656-666.
研究背景:世界每年新增的儿童肿瘤患者大约40万。与成年人癌症不同的是,儿童肿瘤大多起源于胚胎组织,并且影响肿瘤发展的细胞类型是不同的。白血病是一种多发于儿童的肿瘤,比例约占1/3。再如,神经母细胞瘤,是一种高度异质性癌症,可始于婴儿和在儿童或青少年期间出现恶性进展,但少见于成年人。目前,尚未发现能用于所有儿童肿瘤诊断的全面分子生物标志物。转录组测序不仅能反映肿瘤的表达谱特征,而且可以能发现独立于基因组的肿瘤间差异。大多数已建立的转录组测序分类模型都是需要预标的有监督工具,因此难以发现一些复杂的表型变化。此外,瘤内异质性和肿瘤基质或免疫细胞浸润存在可能会导致在同一种肿瘤同时存在预后不良和预后良好的生物标志物。综上,有必要寻找以转录组测序为基础、灵活性高和适用于所有儿童肿瘤的生物标志物。
样本类型:聚类用数据集:2,178份儿童肿瘤样本、9,400成人肿瘤和1,735非癌组织。神经母细胞瘤转录可塑性验证样本8份。
数据类型:RNAseq和scRNAseq
研究主要内容:基于RNAseq建立一种名为RACCOON的自适应聚类方法,该方法能实现对肿瘤亚型进行无监督分类。通过比较不同类群的特征,发现儿童和成年肿瘤因年龄不同明显的差异,并且发现儿童转录紊乱性更高。接着研究者开发了一个名为OTTER的集成CNN分类器,并以RACCOON的聚类结果作为输入。与任何单一模型和以往发表的分类器相比,OTTER在所有指标上都表现更为优秀,并能高精确地对儿童肿瘤样本进行癌种类型、癌与非癌和亚型进行分类。更令人惊讶的是,该分类管道在低肿瘤纯度、高技术噪音和低测序深度(几百万个reads)下,仍能保持较高的准确度。总而言之,该研究提供了一个适用儿童肿瘤的通用分类器,并有望应用于其他的癌症类型。
Diagnostic classification of childhood cancer using multiscale transcriptomics
翻译
Abstract:
The causes of pediatric cancers' distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.
翻译