张德祥 (2023-04-16 11:20):
#paper https://doi.org/10.48550/arXiv.2302.10051 一种用于理解神经计算算法基础的既定规范方法是从原则计算目 标中导出在线算法, 并评估它们与解剖学和生理学观察的兼容性。 相似性匹配目标已成为成功导出在线算法的起点, 这些算法映射到具有点神经元和 Hebbian/anti‐Hebbian 可塑性的神经网络 (NN)。这些神经网络模型解释了许多解剖学和生理学观察; 然而, 这些目 标的计算能力有限, 并且派生的 NN 无法解释在整个大脑中普遍存在的多隔室神经元结构和非赫布形式的可塑性。在本文中, 我们回顾并统一了相似性匹配方法的最新扩展, 以解决更复杂的目 标, 包括范围广泛的无监督和自 监督学习任务, 这些任务可以表述为广义特征值问题或非负矩阵分解问题。有趣的是, 源自这些目 标的在线算法自 然地映射到具有多隔室神经元和局部非赫布学习规则的神经网络。 因此, 这种相似性匹配方法的统一扩展提供了一个规范框架, 有助于理解整个大脑中发现的多区室神经元结构和非赫布可塑性。
A normative framework for deriving neural networks with multi-compartmental neurons and non-Hebbian plasticity
翻译
Abstract:
An established normative approach for understanding the algorithmic basis of neural computation is to derive online algorithms from principled computational objectives and evaluate their compatibility with anatomical and physiological observations. Similarity matching objectives have served as successful starting points for deriving online algorithms that map onto neural networks (NNs) with point neurons and Hebbian/anti-Hebbian plasticity. These NN models account for many anatomical and physiological observations; however, the objectives have limited computational power and the derived NNs do not explain multi-compartmental neuronal structures and non-Hebbian forms of plasticity that are prevalent throughout the brain. In this article, we review and unify recent extensions of the similarity matching approach to address more complex objectives, including a broad range of unsupervised and self-supervised learning tasks that can be formulated as generalized eigenvalue problems or nonnegative matrix factorization problems. Interestingly, the online algorithms derived from these objectives naturally map onto NNs with multi-compartmental neurons and local, non-Hebbian learning rules. Therefore, this unified extension of the similarity matching approach provides a normative framework that facilitates understanding the multi-compartmental neuronal structures and non-Hebbian plasticity found throughout the brain.
翻译
回到顶部