张德祥 (2023-01-06 18:42):
#paper https://doi.org/10.48550/arXiv.2212.12393 A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference 这篇论文受GFlownet启发,首次在MNIST ADD的训练上达到了 15位数的加法训练,人造算数天才指日可待。结合神经网络和符号计算 。
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference
翻译
Abstract:
We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to scale the Multi-digit MNISTAdd benchmark to sums of 15 MNIST digits, up from 4 in competing systems. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.
翻译
回到顶部