尹志 (2022-12-31 14:48):
#paper doi: https://doi.org/10.48550/arXiv.2210.11250,Structure-based drug design with geometric deep learning. 这是一篇比较新的关于药物设计和深度学习的短小的综述。主要探讨了在结构化药物设计领域的若干重要子任务上,几何深度学习技术是如何发挥其作用的。考虑到结构化药物设计主要使用大分子(比如蛋白质、核酸)的三维几何信息来识别合适的配体,几何深度学习作为一种将几何对称性引入深度学习的技术是非常有潜力的工具。文章主要探讨了1)分子性质预测(结合亲和度、蛋白质功能、位置分数);2)结合位点和结合面预测(小分子结合位点和蛋白-蛋白结合面);3)结合位置生成和分子对接(配体-蛋白和蛋白-蛋白对接);4)基于结构的小分子配体de novo 设计几个子任务。从分子的常见表征谈起,再讨论结构化药物设计中存在的对称性问题,然后通过四个小节,分别讨论了几何深度学习对四个子任务的研究现状。是基于AI的结构化药物设计领域的一篇很不错的guideline。
Structure-based drug design with geometric deep learning
翻译
Abstract:
Structure-based drug design uses three-dimensional geometric information of macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric deep learning, an emerging concept of neural-network-based machine learning, has been applied to macromolecular structures. This review provides an overview of the recent applications of geometric deep learning in bioorganic and medicinal chemistry, highlighting its potential for structure-based drug discovery and design. Emphasis is placed on molecular property prediction, ligand binding site and pose prediction, and structure-based de novo molecular design. The current challenges and opportunities are highlighted, and a forecast of the future of geometric deep learning for drug discovery is presented.
翻译
回到顶部