张德祥 (2022-11-16 08:17):
​#paper https://doi.org/10.48550/arXiv.2204.14170 Tractable Uncertainty for Structure Learning 不幸的是,DAGs 的超指数空间使得表示和学习这样的后验概率都极具挑战性。一个重大突破是引入了基于order的表示(Friedman & Koller,2003),其中状态空间被简化为拓扑序的空间,即使这样,任然难于计算。 基于样本的表征对后验的覆盖非常有限,限制了它们所能提供的信息。例如,考虑在给定任意一组所需边的情况下,寻找最可能的图扩展的问题。给定超指数空间,即使是大样本也可能不包含与给定边集一致的单个订单,这使得回答这样的查询是不可能的。 因此需要寻找紧凑的表示。 利用阶模分布中存在的精确的层次条件独立性。这允许OrderSPNs 在相对于其大小的潜在指数级更大的订单集合上表达分布。提供线性时间的Bayesian causal effects因果计算。
Tractable Uncertainty for Structure Learning
翻译
Abstract:
Bayesian structure learning allows one to capture uncertainty over the causal directed acyclic graph (DAG) responsible for generating given data. In this work, we present Tractable Uncertainty for STructure learning (TRUST), a framework for approximate posterior inference that relies on probabilistic circuits as the representation of our posterior belief. In contrast to sample-based posterior approximations, our representation can capture a much richer space of DAGs, while also being able to tractably reason about the uncertainty through a range of useful inference queries. We empirically show how probabilistic circuits can be used as an augmented representation for structure learning methods, leading to improvement in both the quality of inferred structures and posterior uncertainty. Experimental results on conditional query answering further demonstrate the practical utility of the representational capacity of TRUST.
翻译
回到顶部