笑对人生
(2022-10-06 00:00):
#paper doi: 10.1038/nmeth.2883. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014 Apr;11(4):396-8.
恶性肿瘤的发生往往起源于一个癌变细胞(即肿瘤是由单克隆发育而来的)。癌变细胞在细胞增殖的过程中,由于变异或外界因素的压力选择,可能会产生在基因和表型方面与母细胞存在较大差异的子细胞。当这些具有相同遗传特点的子细胞逐渐形成一个细胞群体时,就称为是一个亚克隆。体细胞的突变是随机的,因此一个肿瘤块可能存在不同的克隆或亚克隆细胞。PyClone是一个基于分层贝叶斯的统计推断模型来分析癌症中克隆群体结构的软件。PyClone适用于多样本深度测序的体细胞突变数据,推断克隆群体时主要评估了细胞普遍性(prevalences),并解释了由于片段拷贝数变异(segmental copy-number changes)和正常细胞污染(normal-cell contamination)引起的等位基因不平衡。本研究还利用单细胞测序验证了PyClone推断克隆和亚克隆细胞群体的准确性。
PyClone: statistical inference of clonal population structure in cancer
翻译
Abstract:
We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.
翻译