笑对人生
(2022-10-02 23:49):
#paper doi: 10.1016/j.omtn.2021.12.009. Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data.Mol Ther Nucleic Acids. 2021 Dec 11;27:404-411.
尽管由于技术限制,空间转录组(spatial transcriptomics,ST)无法实现真正的单细胞空间转录组,然而,相对于single cell transcriptomics,ST却可以提供重要的细胞空间位置信息。识别空间变异基因(Spatially Variable Gene,SVGs),即找到表达与空间位置相关的基因,是ST数据分析的重要内容之一。SVGs有助于系统地分析特定位置细胞状态、推断细胞间通讯,确定空间组织病理表型与基因表达的关系。与对不同区域直接做差异表达分析方法不同的是,高可变基因分析能够揭示跨区域间的类梯度表达模式变化,例如癌变区和非癌区之间的过渡区域表达模式。本综述系统且详细地总结了目前最前沿的识别SVGs工具及其背后涉及的算法。作者根据算法原理,将SVGs工具分为三大类,分别是基于统计学模型、基于机器学习和基于空间网格。作者认为,目前大多数方法都存在运存消耗过大和输出的统计显著性p值为0过多的问题,此外,缺乏对各个工具相比较的评价指标。这里提到莫兰指数(Moran‘s I),它是一种评价空间自相关(spatial autocorrelation)的统计学方法,来源于地理学。Moran’s I 的取值范围在-1到1之间,Moran’s I>0表示空间正相关,值越大,空间相关性越明显。Moran’s I<0表示空间负相关性,值越小,空间差异越大。否则,Moran’s I=0,空间呈随机性。
Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data
翻译
Abstract:
Recent advances in spatially resolved transcriptomics (SRT) have revolutionized biological and medical research and enabled unprecedented insight into the functional organization and cell communication of tissues and organs i. Identifying and elucidating gene spatial expression variation (SE analysis) is fundamental to elucidate the SRT landscape. There is an urgent need for public repositories and computational techniques of SRT data in SE analysis alongside technological breakthroughs and large-scale data generation. Increasing efforts to use techniques in SE analysis have been made. However, these attempts are widely scattered among a large number of studies that are not easily accessible or comprehensible by both medical and life scientists. This study provides a survey and a summary of public resources on SE analysis in SRT studies. An updated systematic overview of state-of-the-art computational approaches and tools currently available in SE analysis are presented herein, emphasizing recent advances. Finally, the present study explores the future perspectives and challenges of techniques in SE analysis. This study guides medical and life scientists to look for dedicated resources and more competent tools for characterizing spatial patterns of gene expression.
翻译
Keywords: