Ricardo (2022-01-20 19:09):
#paper doi:10.1158/1078-0432.CCR-17-1038 Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. 于2017年发表于clinical cancer research。这篇文章算是跟我方向没啥关系,为啥会看这篇文章主要是为了应付老板给安排的一个医院的项目。简单来说,这篇文章就是开发了一个放射组学的模型,用于评估局部晚期直肠癌(LARC)患者对新辅助放化疗的病理完全缓解(pCR,pathological complete response,不知道怎么翻译好)。这篇文章纳入了222名LARC患者(152例primary cohort,70例属于validation cohort),在术前都接受了放化疗。所有患者在放化疗前后均采集了T2像和弥散像。 模型构建流程:1. 由两名放射科医生对放疗前后的T2w图像和弥散像手动提取肿瘤的ROI区域;2.分别从这4个图像中提取3组影像学特征:4个统计特征,43个体素强度计算特征和516个小波特征。总计每个病人有(516+43+4)*4=2252个影像组学特征。3.首先用2-sample t-test在primary cohort中pCR组和non-pCR组中有差异的最佳特征;其次用LASSO进一步筛选特征。4.然后使用SVM来区分患者是否achieve pCR,并使用基于所选特征的线性核训练的SVM模型计算每个患者的放射组学评分。5.最后在多个临床信息数据上使用多变量logistic回归分析。 结果:放射性组学特征包括30个选定的特征,在primary cohort和validation cohort中均表现出良好的鉴别性能。个体化放射组学模型融合了放射组学特征和肿瘤长度,具有良好的辨别性,在validation cohort中roc曲线面积为0.9756(95%置信区间为0.9185-0.9711)。
Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer
翻译
Abstract:
To develop and validate a radiomics model for evaluating pathologic complete response (pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC). We enrolled 222 patients (152 in the primary cohort and 70 in the validation cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. All patients underwent T2-weighted and diffusion-weighted imaging before and after chemoradiotherapy; 2,252 radiomic features were extracted from each patient before and after treatment imaging. The two-sample test and the least absolute shrinkage and selection operator regression were used for feature selection, whereupon a radiomics signature was built with support vector machines. Multivariable logistic regression analysis was then used to develop a radiomics model incorporating the radiomics signature and independent clinicopathologic risk factors. The performance of the radiomics model was assessed by its calibration, discrimination, and clinical usefulness with independent validation. The radiomics signature comprised 30 selected features and showed good discrimination performance in both the primary and validation cohorts. The individualized radiomics model, which incorporated the radiomics signature and tumor length, also showed good discrimination, with an area under the receiver operating characteristic curve of 0.9756 (95% confidence interval, 0.9185-0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the clinical utility of the radiomics model. Using pre- and posttreatment MRI data, we developed a radiomics model with excellent performance for individualized, noninvasive prediction of pCR. This model may be used to identify LARC patients who can omit surgery after chemoradiotherapy. .
翻译
回到顶部