尹志 (2022-08-31 09:46):
#paper doi:10.1089/genbio.2022.0017 GEN Biotechnology, 2022, Deep Learning Concepts and Applications for Synthetic Biology. 这是一篇2022年新出的深度学习与合成生物学的综述,或者我更愿意称之为元综述。文章对深度学习在合成生物学领域的应用做了简要介绍。对合成生物学中可用于深度学习框架的数据做了分类,对深度学习目前常用的结构也做了介绍。最值得一看的是深度学习在合成生物学领域的的应用:比如生物组成的设计与建模、使用生成模型方法合成新的组成、结构预测、视觉应用等等,对于提纲挈领非常有帮助。但是内容不是很具体,这也是我称之为元综述的原因。在每个具体的小节,作者在基本概念的科普之后,一般会指向几篇这个领域更合适的综述。因此,带着自己的方向和问题去看这篇元综述,逐步挖下去,应该会有很好的阅读体验。
IF:2.000Q3 GEN biotechnology, 2022-Aug-01. DOI: 10.1089/genbio.2022.0017 PMID: 36061221
Deep Learning Concepts and Applications for Synthetic Biology
翻译
Abstract:
Synthetic biology has a natural synergy with deep learning. It can be used to generate large data sets to train models, for example by using DNA synthesis, and deep learning models can be used to inform design, such as by generating novel parts or suggesting optimal experiments to conduct. Recently, research at the interface of engineering biology and deep learning has highlighted this potential through successes including the design of novel biological parts, protein structure prediction, automated analysis of microscopy data, optimal experimental design, and biomolecular implementations of artificial neural networks. In this review, we present an overview of synthetic biology-relevant classes of data and deep learning architectures. We also highlight emerging studies in synthetic biology that capitalize on deep learning to enable novel understanding and design, and discuss challenges and future opportunities in this space.
翻译
回到顶部