颜林林
(2022-07-21 00:29):
#paper doi:10.1186/s13059-022-02726-7 Genome Biology, 2022, Integration of single-cell multi-omics data by regression analysis on unpaired observations. 受技术条件限制,绝大多数的单细胞多组学研究,其实都很难在同一细胞上同时检测多个不同组学。本文针对这个问题,基于“相似表达的靶基因的调控基因也相似”的直观认识和假设,采用回归分析方法,对scRNA-seq和ATAC-seq数据之间的关系进行关联和推断,使非配对的scRNA-seq和ATAC-seq实验(即并非同一细胞,而是在不同细胞上分别开展了这两项检测)中,可以通过其中一项数据(如ATAC-seq的染色质开放信息)去推断对应的被调控基因的表达。该方法在模拟数据和实测数据上进行评估,可以达到很高的准确度(与eQTL mapping进行对比,结果高度一致)。这为更好利用当前积累的大量非配对单细胞数据,提供了方法学上的支持。
IF:10.100Q1
Genome biology,
2022-07-19.
DOI: 10.1186/s13059-022-02726-7
PMID: 35854350
PMCID:PMC9295346
Integration of single-cell multi-omics data by regression analysis on unpaired observations
翻译
通过对未配对观察值的回归分析整合单细胞多组学数据
Abstract:
Despite recent developments, it is hard to profile all multi-omics single-cell data modalities on the same cell. Thus, huge amounts of single-cell genomics data of unpaired observations on different cells are generated. We propose a method named UnpairReg for the regression analysis on unpaired observations to integrate single-cell multi-omics data. On real and simulated data, UnpairReg provides an accurate estimation of cell gene expression where only chromatin accessibility data is available. The cis-regulatory network inferred from UnpairReg is highly consistent with eQTL mapping. UnpairReg improves cell type identification accuracy by joint analysis of single-cell gene expression and chromatin accessibility data.
翻译
Keywords: